by Denise Sullivan Denise Sullivan No Comments

Exploring the Benefits of Fluorolon PTFE in Industrial and Engineering Applications


Fluorolon PTFE (Polytetrafluoroethylene) is a unique synthetic polymer with many benefits for industrial and engineering applications. This versatile material can be used for a wide range of purposes, from chemical processing to cookware. In this article, we will explore some of the key benefits and uses of Fluorolon PTFE.

FEP encapsulated helical spring seals are approved for cryogenic and FDA use. Fluorolon PTFE

Chemical Resistance


One major benefit of using Fluorolon PTFE is its excellent chemical resistance properties. This material is highly resistant to acids, bases, solvents, and other corrosive substances. This makes it an ideal choice for use in applications such as chemical processing plants or food processing industries where harsh chemicals are often used. It can also be used as a protective coating on metal surfaces to protect them from corrosion or damage from exposure to corrosive materials.

High-Temperature Resistance


Another benefit associated with Fluorolon PTFE is its high-temperature resistance properties. This material can withstand temperatures up to 260°C (500°F) without losing its strength or shape – making it an excellent choice for use in insulation, gaskets, seals, and other high-temperature applications such as aerospace parts or engine components that require superior heat resistance capabilities. The thermal stability offered by this polymer also ensures that parts maintain their original dimensions even under extreme conditions making them ideal for precise manufacturing processes where dimensional accuracy is critical.

Low Friction Properties


Fluorolon PTFE also offers exceptionally low friction properties, making it suitable for use in various mechanical components such as bearings and slides where minimal friction between moving surfaces is desired. Its low coefficient of friction helps reduce wear on machinery parts resulting in increased operational life spans while simultaneously providing smoother operation with less vibration compared with traditional materials like steel or bronze alloys. Furthermore, since no lubricants are required, energy consumption costs due to frequent maintenance procedures associated with lubrication are significantly reduced compared to traditional metals.

Non-Stick Properties


In addition, Fluorolon PTFE has impressive non-stick properties, making it ideal for use in cookware, baking sheets, conveyor belts, and other industrial equipment. Its non-stick characteristics enable food products like cakes, cookies, etc., to slide easily off surfaces resulting in efficient production processes while maintaining product quality standards at the same time. Furthermore, these non-stick characteristics help reduce clean-up times after the production process, thereby saving both time & money.

Electrical Insulation Properties

Last but not least, one important benefit this polymer provides includes its electrical insulation capabilities making it perfect for use within high-voltage industrial equipment & electronic components alike. Its ability to prevent electricity from leaking out allows companies within the electronics industry to create safer products without having to worry about hazardous shocks occurring during usage, thus ensuring customer safety at all times, leading to higher customer satisfaction & loyalty levels over time.

At Advanced EMC Technologies we use Flourolon Virging PTFE primarily for seals, seats, bearings, and insulaotrs. All our Flourolon PTFE is FDA and dairy approved. We offfer both Virgin PTFE ASTM-D4894 and filled PTFE ASTM D4745-06.

PropertySpecifiedUnitsMethod
Specified Gravity (FEP) Only2.14 –2.19gr/ccASTM D792
Maximum Recommended  Stretch2 %N/AASTM D638
ES Seals Are For Type ServiceStatic N/A
Coefficient of Friction (FEP)0.19StaticASTM D3702
Dielectric Constant (FEP)N/AN/AASTM D150
Dielectric Strength (FEP)N/AN/AASTM D257
Thermal Expansion No Spring8.3 x 10^5thin/in/°FASTM D696
Compressive StrengthN/AN/AASTM D695-57
FEP Seal Temperature Range-420 to 428°F
PFA Seal Temperature Range-420 to 500°F

To summarize, the many benefits associated with using Fluorolan PTE should not be overlooked, especially when considering various industrial & engineering-related applications that call out these specific attributes offered by this synthetic polymer beyond any other commonly available alternatives currently present in the market today. Its ability to resist chemicals and withstand higher temperatures than most polymers without losing shape/strength, alongside offering superior low friction/non-stick qualities coupled with excellent electrical insulation capabilities, clearly demonstrates why so many industries opt to choose Fluorolon PTFE over any other material available.

by Denise Sullivan Denise Sullivan No Comments

The Effect Surface Finish Has on PTFE Seals

Surface finish plays an essential role in the effectiveness of PTFE seals. The different finishes provide different degrees of contact between the two components, which affects the seal’s strength and reliability. In this paper, we will discuss the effect of surface finish on PTFE seal performance and suggest ways to improve seal quality.

Surface finish on PTFE

The Influences of Surface Finish on Friction

The surface finish is critical for polymer-based seals. Despite being considered a soft plastic, PTFE is significantly harder than traditional o-ring materials. Because of this, if the mating surface is designed for other materials, it can cause the PTFE seals to leak.

As you can see in the graph below, the improvement in the surface finish has a favorable effect on the frictional force required.

The following specifications were used in the force test that resulted in the above data.

  • Stroke Speed: 4 in/min (102 mm/min)
  • Shaft Diameter: 0.1875in. (4.762mm)
  • Ambient Temperature: 73°F (23°C)
  • Mating Surface Material: 17 -4 PH S.S.
  • Mating Surface Hardness: -40 Rc

Surface Finish Influences on Wear

The finish of the mating surface is one of the main factors in the PTFE seal wear. Wear on the seal is generally proportional to frictional force. In other words, less friction reduces the wear on the seal. 

The following graph shows how a smoother surface finish reduces the PTFE seal wear rate.

To calculate the wear rate in microinches RMS, we used the formula IN3 -MIN/LB-FT-HR -10-9. For microinches Ra, we used the formula CM3 -MIN/KG-M-HR -10-9.

We used the following test parameters during our testing to ensure accuracy for each test.

  • Surface Speed: 55 fpm (17 m/min)
  • Loading Stress: 55 lb./in2 (4 bar)
  • Wear Rate in Air: @ PV 3025 lb./in2 x ft/min (7.5 N/mm x m/min)
  • Mating Surface Hardness: Rc 42
  • Matin Surface Maerial 17 -4 PH Stainless steal
  • Mating Surface Finish: 1.6 to 111.1 microinches RMS (1.4 to 100 microinches RA)
  • Ambient Temperature: 70°F (21°C)
  • Ambient Relative Humidity 75% RH
  • Duration 5 Hours
  • Seal material FP

Influences on Sealing Ability

Finally, we looked at how the surface finish affected PTFE’s sealing ability. In general, the sealing ability of PTFE is proportional to the fluid’s viscosity. If a media, like gas, has a reduced viscosity, it is more difficult to seal. In these situations, having a smoother finish on the mating surface can help ensure fewer leaks.

We’ve found that different mediums require not only different finish ranges between them but also different finish ranges when considering if the surface is dynamic or static. You can see our suggested finish in the table below.

MediaDynamic Surface Static Surface 
Gases and Liquids at Cryogenic Temperatures2 to 4 microinches RMS
(1.8 to 3.6 Microinches Ra)
4 to 8 Microinches RMS
(3.6 to 7.2 Microinches Ra)
Gas at Non-Cryogenic Temperatures6 to 12 Microinches RMS
(5.4 to 10.8 Microinches Ra)
12 to 32 Microinches RMS
(10.8 to 28.8 Microinches Ra)
Liquids8 to 16 Microinches RMS
(7.2 to 14.4 Microinches Ra)
16 to 32 Microinches RMS
(14.4 to 28.8 Microinches Ra)

As you can see, the mating surface finishes can profoundly affect PTFE seals. Because of this, if the mating surface is designed for other materials, it can cause the PTFE seals to leak. Finally, we examined how this affected PTFE’s sealing ability. In general, the sealing ability of PTFE is proportional to the fluid’s viscosity.