by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Seals for Cryogenic Space Applications: Why PTFE Spring-Energized Seals Are the Solution

Seals for cryogenic space applications must survive conditions that push materials and engineering itself to the edge. Temperatures can drop below -250°C. There’s no atmospheric pressure. No lubrication. No margin for error. And when these seals are used in systems like cryogenic fuel transfer, attitude control thrusters, or deep-space instruments, failure isn’t just inconvenient: it’s catastrophic.

That is where PTFE spring-energized seals come in. These seals combine low-temperature flexibility, chemical inertness, and a constant, adaptive sealing force, making them one of the most reliable options for cryogenic sealing in space.

In this article, we break down how they work, what materials and energizers are involved, and why they outperform traditional sealing technologies in the vacuum and cold of space. We also tackle the biggest challenges in cryogenic aerospace sealing—and show how these advanced seals meet them head-on.

What Are Spring-Energized Seals?

A spring-energized seal utilizes a precision metal spring embedded within a polymer jacket (e.g., filled PTFE, PEEK, FEP)  to apply a continuous force against the sealing surface, ensuring reliable, low-friction sealing even under extreme temperatures, pressure variations, and material contraction. These seals have proven ideal for some of the harshest environments, including static and dynamic cryogenic systems.

Spring energizers are available in various configurations, including cantilever for light loads and dynamic applications, helical for low temperatures and vacuum conditions, and canted coil for high-pressure, high-temperature environments.

For cryogenic PTFE spring-energized seals, the most common grades used are

  • Virgin PTFE (low friction, extreme temperature tolerance)
  • Glass-filled PTFE (better wear resistance)
  • Carbon-filled PTFE (enhanced dimensional stability)
  • MoS₂ or graphite-filled PTFE (lower wear, improved dry run)
Cryogenic Seals for Low Temperature Situations
Cryogenic Seals for Low Temperature Situations

Seals for Cryogenic Space Applications: Challenges

Engineers face several challenges when specifying cryogenic sealing solutions for space applications. These include thermal contraction, outgassing, material stability, lubrication, rapid pressure transitions, and seal life.

Challenge #1: Thermal Contraction

The extreme cold in space causes both hardware and seals to contract, with traditional elastomeric seals often shrinking and losing sealing force at cryogenic temperatures. PTFE spring-energized seals maintain contact via the spring energizer as it compensates for seal shrinkage. In fact, spring energizers adapt to radial or axial changes, maintaining sealing pressure even at temperatures as low as -250°C.

Challenge #2: Outgassing and Material Stability

Materials with a high volatile content can outgas in a vacuum, leading to the contamination of optics and electronics. However, Virgin PTFE and high-purity filled PTFE variants exhibit minimal outgassing, meeting NASA/ESA standards. They are chemically inert and stable under ultra-high vacuum (UHV) conditions.

Challenge #3: Friction and Lubrication in Vacuum

In space, the lack of atmosphere can make lubrication extremely difficult (especially if vacuum pressures are involved). PTFE is self-lubricating and has one of the lowest coefficients of friction among polymers. In addition, filled PTFE (e.g., graphite or MoS₂) enhances dry-run performance and the spring-energized design ensures low breakout friction and a consistent force profile.

Challenge #4: Rapid Pressure Transitions

Systems transitioning from launch (atmospheric) to space (vacuum) face rapid pressure differential, and traditional elastomeric seals can blow out, crack, or fail to reseat. On the other hand, spring-energized PTFE seals accommodate pressure variations with a controlled energizer preload, while the elastically deforming PTFE jacket absorbs shock without sustaining permanent damage. Additionally, options are available for high-vacuum to moderate-pressure regimes.

Challenge #5: Seal Longevity and Wear

Another serious complication when designing seals for space is that maintenance is likely not possible once a system is deployed in space. Seal wear over long mission durations can lead to leakage or mechanical failure, but PTFE’s wear resistance is enhanced through fillers (carbon, glass, bronze). And the spring maintains sealing force over millions of cycles without fatigue. Advanced EMC also provides fully characterized wear data for mission planning.

Why Choose Seals for Cryogenic Space Applications from Advanced EMC?

Advanced EMC Technologies brings deep materials science expertise and aerospace-focused engineering to the design and production of PTFE spring-energized seals, especially for extreme environments like cryogenic sealing in space.

Every mission has unique sealing requirements, and Advanced EMC offers an extensive portfolio of PTFE formulations, energizer types, and precision manufacturing options to meet them. Whether the application calls for ultra-low friction, minimal outgassing, or long-term performance under high-cycle dynamic loads, Advanced EMC engineers work closely with aerospace clients to specify the right PTFE grade—virgin, carbon-filled, glass-filled, or dry-lubricant-enhanced—and pair it with the optimal spring geometry (canted coil, helical, or cantilever) for consistent seal loading across a wide thermal range.

Advanced EMC’s cleanroom-compatible production standards, vacuum-bakeout-capable materials, and helium leak testing ensure that components meet the strict demands of satellite, propulsion, and orbital systems. These seals are not only designed to function below -250°C, but also engineered for endurance under pressure transitions, vibration, and long-duration service without re-torque or adjustment.

With an emphasis on low outgassing, dimensional precision, and thermal resilience, Advanced EMC’s spring-energized seals deliver proven reliability in systems where seal failure is not an option.

Conclusion

In the unforgiving environment of space, cryogenic sealing is not just a design challenge—it’s a mission-critical priority. Seals must withstand extreme cold, rapid pressure transitions, and the absence of lubrication, all while maintaining dimensional integrity and sealing force over long durations.

PTFE spring-energized seals provide a robust and reliable solution. With their combination of chemically inert PTFE jackets and precisely engineered metallic energizers, they provide consistent performance where traditional sealing technologies fail. Whether mitigating thermal contraction, eliminating outgassing concerns, or ensuring low-friction sealing in high-vacuum conditions, these seals deliver the reliability aerospace engineers demand.

When you need seals that perform flawlessly in cryogenic space applications, turn to the experts. Advanced EMC Technologies offers custom-engineered PTFE seals tailored to meet the highest standards of thermal, mechanical, and environmental performance. Backed by material expertise and decades of field-proven results, our sealing solutions are ready to meet the demands of your next mission.

by Brandon Pascual Brandon Pascual 1 Comment

Seals in Space: The Unsung Heroes of Rocketry

The quest for the cosmos is a testament to human ingenuity and determination. As we propel ourselves into the vast expanse of space, the intricate dance of technology and nature becomes ever more critical. One such marvel of engineering, often overlooked, is the role of seals in rocket engines and spacecraft. These small yet mighty components are vital for ensuring the success and safety of space missions.


The Silent Guardians of Rocket Propulsion

Rocket propulsion systems rely on the flawless separation of propellants until the moment of ignition. This separation is crucial, especially when dealing with hypergolic bi-propellants like RP-1 (highly refined kerosene) and Liquid Oxygen (LOX), which ignite spontaneously upon contact. Seals act as the guardians, preventing premature mixing and ensuring that each stage of the propulsion process occurs without incident.

However, the challenges faced by these seals are formidable. The cryogenic nature of LOX requires materials that can withstand extremely low temperatures. Traditional elastomers, commonly used in sealing applications, fall short of the necessary performance at such cryogenic conditions. This necessitates the use of advanced materials and innovative designs.

Hypergolic propellants, while efficient, introduce another layer of complexity. These substances are highly reactive and can ignite on contact, meaning any leak or failure in the seals could result in catastrophic consequences. Therefore, seals must be engineered to maintain their integrity under these extreme conditions, providing an unyielding barrier that ensures the safe handling of these volatile compounds.


Navigating the Extremes: Temperature and Pressure

Seals in rocket engines are exposed to a wide range of temperatures and pressures, from the cryogenic storage of LOX at temperatures as low as -450°F to the blistering heat of 4,000°F in the main combustion chamber. They must maintain their integrity and functionality across these extremes, ensuring no leaks or failures occur.

To put this into perspective, consider the temperature fluctuations a seal must endure during a typical rocket launch. Initially, the seals must function at cryogenic temperatures, ensuring the propellants remain securely stored. As the rocket ignites and propellants are fed into the combustion chamber, the seals are suddenly subjected to extreme heat and pressure. This rapid change can cause thermal expansion and contraction, which must be accounted for in the seal’s design to prevent material fatigue and failure.

The journey of propellants through the various stages of a rocket – from tanks to turbopump assemblies, compressors, pumps, ducts, joints, manifolds, and valves – exposes seals to different states of matter, pressures, and temperatures. Each stage requires seals to adapt and perform consistently, making their reliability paramount. This is where advanced materials like PTFE (Polytetrafluoroethylene), PEEK (Polyether ether ketone), and specialized elastomers come into play, providing the necessary resilience and flexibility to handle these demanding conditions.


Balancing Weight and Cost

In the aerospace industry, every gram counts. The weight of a rocket is directly proportional to the fuel required for launch, impacting the payload capacity and, ultimately, the commercial viability of the mission. Seals must therefore be lightweight yet robust, made from materials that offer excellent strength-to-weight ratios.

Advanced sealing materials like PTFE and PEEK are favored not only for their durability but also for their lightweight properties. PTFE, known for its low friction and high resistance to chemicals and temperature extremes, is often used in applications where traditional materials would fail. PEEK, on the other hand, offers exceptional mechanical strength and can withstand high pressures and temperatures, making it ideal for critical sealing applications in rocket engines.

Cost is another critical factor. Advanced sealing solutions, while more expensive, provide higher reliability and performance. The choice of materials, whether PTFE, PEEK, or specialized elastomers, and the type of seal, such as spring-energized encapsulated seals, play a significant role in the overall cost. Custom solutions tailored to specific requirements further drive up costs, but the investment is justified by the enhanced safety and reliability they offer.


The Art of Specifying and Designing Seals

Designing seals for rocket engines involves a meticulous consideration of various factors. The seals must withstand thermal cycling, maintain cleanliness, ensure chemical compatibility, and exhibit low friction and wear. The surface finish of glands, grooves, and the seal jacket must be flawless to prevent any points of failure.

Thermal cycling, the repeated heating and cooling cycles that seals undergo during a mission, can cause material degradation over time. Engineers must select materials that not only withstand these cycles but also maintain their sealing properties. Cleanliness is another critical factor, as any contamination can compromise the seal’s effectiveness and potentially cause leaks.

Chemical compatibility is essential, especially when dealing with aggressive propellants like LOX and RP-1. The seals must resist chemical attack and degradation, ensuring they maintain their integrity throughout the mission. Low friction and wear properties are equally important, as they reduce the risk of seal damage during the dynamic operations of the rocket.


Internal Links:


A Glimpse into the Future

As space exploration evolves, the demands on sealing technology will continue to grow. The development of reusable rockets, new propellant combinations, and extended missions into deeper space will require even more advanced and resilient seals. The pursuit of these innovations is not just about enhancing performance but also about ensuring the safety and success of every mission.

Reusable rockets, such as those being developed by SpaceX and Blue Origin, present unique challenges for sealing technology. The seals must not only perform flawlessly during multiple launches and re-entries but also endure the rigors of refurbishment and reuse. This requires seals that can maintain their properties over extended periods and through numerous thermal cycles.

New propellant combinations, including methane-based propellants, introduce additional complexities. Methane, while offering advantages in terms of performance and availability, can pose different challenges for seals compared to traditional RP-1 and LOX. Engineers must develop seals that are compatible with these new propellants, ensuring they provide the same level of reliability and safety.

Extended missions into deeper space, such as those planned for Mars and beyond, will push the limits of sealing technology. The seals must withstand the harsh conditions of space, including extreme temperatures, radiation, and vacuum, while maintaining their sealing properties over long durations. This will drive the development of new materials and designs that can meet these unprecedented challenges.


Conclusion

In the grand tapestry of space exploration, seals may seem like minor players, but their role is nothing short of heroic. They stand as the unsung guardians, ensuring that each component of a rocket operates flawlessly, propelling humanity toward new frontiers. As we continue to push the boundaries of what is possible, the technology behind these seals will remain a cornerstone of our journey to the stars.