by admin admin No Comments

Canted Coil Springs for Latching, Holding, and Locking

Many associate canted coil springs with spring-energized seals, but they can be used for much more. For example, canted coil springs provide a lightweight, easy-to-install alternative to traditional mechanical fasteners. 

Canted Coil Springs Fasteners

Canted coil springs can perform three different fastening tasks:

  • Latch: fastens two parts together
  • Lock: permanently fastens two parts together
  • Hold: holds and aligns two parts together

Note that both holding and latching allow for the parts to be disconnected and reconnected. However, if two pieces are locked together, they cannot be separated without either damaging the canted coil spring or the connected parts. Also, note that canted coil springs can be used for quick-release locking, which allows the lock to be bypassed for a quick, simple release. And in all fastening applications, the force required to latch, lock, or hold can be specified by the engineer and accomplished by varying the coil space, wire diameter, spring width, and height.

Advantages of Using Canted Coil Springs as Fasteners

There are several benefits to using canted coil springs instead of more traditional mechanical fasteners. For example, they are easy to install and require no special tools, shortening assembly time. They are also highly reliable and provide dependable performance over thousands of insertion/removal cycles.

Canted coil spring fasteners experience almost no compression set and provide precise, predictable forces even when subject to a wide range of temperatures. Furthermore, the individual coils compensate for mating surface irregularities, misalignment, and dimensional variations. 

Their lightweight, compact nature makes them ideal for use in applications where weight and available space are at a premium, and they can also reduce the complexity of assemblies. Finally, and perhaps most importantly, they can serve other functions besides fastening, such as grounding, service as multi-point conductors, and providing tunable EMI/RFI shielding.

Applications of Canted Coil Fasteners 

In the medical industry, canted coil springs are used for both latching and holding in various applications, including implantable and non-implantable devices and surgical devices, such as customized tools for use by specific surgeons. An example of an implantable device would be joint replacements that require highly reliable locking. 

The oil and gas industry depends on canted coil springs’ highly reliable mechanical fastening capabilities for advanced downhole tools where insertion and breakaway forces must be controllable. In the renewable energy market, canted coil springs work well as connectors within the highly confined environment of turbine nacelles. 

The automotive and aerospace industries find them an ideal approach to fastening in applications where SWaP (Size, Weight, and Power) is critical. In addition, canted coil springs are regularly used in the defense industry, where specific applications include aircraft system connectors and optoelectronics connectors. Finally, canted coil springs also work well for underwater, fluidic, and satellite/orbital connectors.

Conclusion

Canted coil springs are a simple, reliable, multi-use alternative to traditional mechanical fasteners. Benefits include the ability to compensate for dimensional changes, lightweight and compact nature, and their ability to reduce the complexity of systems. They can also serve as not only fasteners but EMI shields and multi-point conductors. And keep in mind that their use ranges from medically implantable devices where their ability to respond to particular insertion/removal forces is critical as well as the harsh and dangerous world of downhole tools in the oil and gas industry. 

FlexForce Canted Coil Springs

Advanced EMC’s FlexForce Canted Coil Springs are available in 300 Series Stainless Steel, Hastelloy, and copper alloys with gold, silver, or nickel plating. In addition to light, medium, and heavy load spring forces, the forces can be customized. Our FlexForce canted coil springs are available in wire diameters between 0.25 mm (0.010 inch) and 1.50 mm (0.059 inch) and coil widths between 1.5 mm (0.039 inch) and 15 mm (0.591 inch). However, other materials, finishes, and dimensions may be available.

 

Contact us at bvardeman@gmail.com or call us at (918)-994-7776 to learn more about the FlexForce canted coil springs and how they can benefit your designs.

by admin admin No Comments

Canted Coil Springs For Conduction

Flexforce Canted coil springs, can be used as effective electrical conductors. They can provide reliable current conduction despite challenges such as vibration, dynamic conditions, and shock loadings where other conductor solutions would fail.

Situations That Pose a Challenge for Conduction

Certain operating conditions can make it challenging to achieve a solid connection for conduction. For example, vibration and shock loadings, such as those experienced in downhole tools for the petrochemical industry, can cause more traditional electrical connections to eventually work loose and risk the integrity of signal and power transfer. 

Any time there is a high probability of motion, such as EV/HEV battery pack connections, there is also a risk that the integrity of the electrical connection could be compromised. In the power industry, issues can arise with heat and reliability for high-current applications that perform conduction, grounding, and isolation.

Rotating parts, high temperatures, and variations in loadings are also challenging for maintaining electrical connections and common to wind energy applications involving turbines. In addition, rotating parts in robotic end grippers and similar automation equipment pose similar issues. 

Implantable devices, such as neurotransmitters and pacemakers, require electrical connections that must also be highly reliable, lightweight, and compact. In addition, lightweight design approaches are critical for many applications, including unmanned vehicles that must be lightweight to maximize their battery-constrained range. 

And some applications, such as semiconductor fabrication, need to take advantage of solutions that can perform multiple purposes, such as conduction combined with latching/holding/locking or EMI shielding.

Canted Coil Springs

Our Canted coil springs, also known as slanted or slanting coil springs, are often used as electrical conducting springs to achieve high integrity connections for applications such as those just described. However, several factors make these springs different, starting with their ability to maintain consistent force over a wide range of deflection. 

The Individual coils that make up these springs maintain contact with the mating surface despite surface irregularities, misalignment, tolerance variations, and dimensional changes. In addition, they experience little to no compression set and are ideal for oddly shaped cross-sections.

When used as electrical conducting springs, the individual coils serve as multiple contact points for electrical conduction and grounding; essentially, each coil is a contact point. As long as one coil remains in contact with the surface, then the electrical connection is maintained.

Benefits of Canted Coil Springs for Conducting

There are numerous advantages over more traditional approaches when canted coil springs are used for electrical conduction. For example, canted coil springs can be designed to meet specific electrical requirements in addition to being manufactured from materials with high conductivity. Varying parameters such as spring diameter, wire diameter, coil height, canted angle, and the number of turns make it possible to tune amperage and electrical resistance for optimized solutions. In addition, platings such as gold or silver can be used to achieve ultra-low impedance.

Because of the extensive surface area of canted coil springs, they can transmit high power levels while generating less heat than traditional solutions. As a result, they provide outstanding heat-to-current carrying capacity even in extremely high temperatures. This same aspect is also essential in implantable devices where heat generation must be minimized for patient safety. In addition to their conducting capabilities, canted coil springs can serve as excellent EMI/RF shields for applications such as downhole tooling in oil exploration.

Canted coil springs support SWaP (space, weight, and power) requirements while reducing system complexity. This system simplification is often seen when they are used for mechanical fastening (latch, lock, or hold) in addition to electrical conduction. They make it possible to achieve far greater contact densities in smaller spaces than equivalent conductivity solutions. And one of the outstanding features of canted coil springs, as alluded to earlier, is their ability to provide specific force levels for fastening that include low force insertion.

As discussed in the previous section, these springs are able to maintain contact with surfaces despite factors such as impact and shock loadings, angular misalignment vibration, dimensional changes, and mating surface irregularities. In addition, they maintain performance in other harsh conditions by using materials and platings that are corrosion resistant. And canted coil springs, when designed and installed correctly, can reduce the possibility of conductor fatigue failure in relation to multiple insertion/removal cycles. Their minimal compression set also contributes to their extensive operational life.

Finally, canted coil springs are easy to clean and sanitize if needed for medical, pharmaceutical, food, and beverage applications. 

Conclusion

Canted coil springs are used as highly reliable electrical conductors in industries such as medicine, transportation, aerospace, semiconductor fabrication, industrial, energy, and defense. From surgical bones saws to guided weaponry, canted coil springs have provided dependable, effective conductivity solutions. 

 

Advanced EMC FlexForce Canted Coil Springs

For economical, reliable, SWaP-friendly conductivity solutions, Advanced EMC FlexForce canted coil springs may be the answer. The experts here at Advanced EMC can help you determine if a canted coil spring conductor will meet your design specifications and constraints. And if it does prove to be what you need, they will be there every step of the way until you have the conductor your design requires.

To learn more, you can also read 7 Things to Know About FlexForce Canted Coil Springs.