by Denise Sullivan Denise Sullivan No Comments

Ball Valve Components: What Are They

ball valve components

Ball valves are designed to control flow by rotating an internal ball within a housing. They’re often used for applications where there’s a need to regulate pressure, temperature, or flow rate.

A ball valve has two main parts: a body with a central opening and a ball that fits into the opening. As the ball rotates, it opens or closes the valve. In addition to the main parts, ball valves have different internal components that help them work in different environments. Standard ball valve components include:

  • Chevron packings
  • O-rings and backup rings
  • Floating seats
  • Inserts

Keep reading to learn more about these components.

Chevron Packings

Chevron packings are also called v packing or vee packing seals. These seals automatically react to changes in pressure. Multiple chevron seals are used together to form the overall seal. While these seals have a v-shape, they are shipped with a male and female adapter to provide a flat surface rather than the v-shape.

Chevron ball valve components work well at sealing fluid in centrifugal, static, and reciprocating environments. They are recommended to reduce pressure and avoid shrinkages in the presence of linear or rotary movement. 

These seals are manufactured in virgin PTFE, modified PTFE, and glass or carbon-filled PTFE. While virgin seals are ideal for many conditions, filled compounds are recommended for most applications. Your provider will recommend the optimum PTFE compound.

O-Rings and Backup Rings

O-rings are a standard ball valve component. They are used whenever soft sealing is required to help prevent extrusion. The design of these seals allows them to be used in harsh conditions and with aggressive chemicals.

The o-rings found in ball valves are often used with backup rings. They can be made from neoprene, silicone rubber, polyurethane, and PTFE. The precise material will depend on the application and environment that the seal is employed.

Backup rings are circular sections, which may be cut or uncut, that help prevent the extrusion process. These are employed alongside o-rings or lip seals when couplings are not suitable.

Floating Seats 

A floating ball valve is one where the seat holds the ball in place while it floats around in the valve body. Pressure from the gas or liquid helps to push the ball against the downstream seat to form a tight seal.

Floating seats are used in several applications, such as oil and gas, cryogenic,  heating, and pharmaceuticals. However, they are most commonly found in hydraulic systems. The type of polymeric material used in these seats depends on maximum pressure, working temperature, or the type of gas or fluid it regulates.

Inserts

Like o-rings, inserts are in seats with soft sealing. This gasket can be manufactured from several different thermoplastic materials depending on its conditions. 

For example, virgin PTFE seals are unsuitable for butadiene or styrene service. PEEK material is not resistant to nitric acid or sulphuric acid. However, filled PTFE works well in high temperatures and low pressures, while PCTFE is ideal for cryogenic applications.

Conclusion

Ball valve components help to ensure the valves seal correctly. Depending on the valve application, these components can include o-rings, backup rings, chevron packing, inserts, and floating seats. 

Finding the appropriate seal inserts and materials can be challenging. Contact us today for help determining what best suits your application.

by Denise Sullivan Denise Sullivan No Comments

5 Common reasons of Valve Seat Failure

valve seat failure

 

Valve seat failure can lead to costly and time-consuming issues. Under certain circumstances, a ball valve seat failure can cause explosions and lead to life-threatening situations. In this article, we will cover the top five causes of failure.

Material Choice

The material choice of the valve seat can contribute to valve seat problems if you pick the wrong option. Different materials work in different operating conditions, so you want to ensure that you research the material carefully before choosing.

The most common material options are 

  • PEEK
  • PTFE
  • TFM
  • PCTFE
  • Acetal
  • Vespel

The wrong material can cause unexpected issues that may damage the hardware of mating components or even physical injury.

Cold Flow

While PTFE, or Teflon, is a common material ivalve seats, there could be some cold flow resistance issues. Cold flow is the process when solid material slowly deforms under the influence of long-term mechanical stress.

The cold flow of material during us and cycling causes a slow deterioration in valve performance. Despite cold flow issues, PTFE is still the best choice in many industries. Choose a filled PTFE instead of virgin PTFE to mitigate complications from cold flow. Filled is less susceptible to stress and has better resistance to cold flow.

Excessive Friction

Excessive friction can also cause valve seat issues. Excessive circumferential seal force accelerates wear on the valve, which leads to an increase in torque requirements. The friction between the ball and the valve seat affects how much torque is necessary to turn the ball valve. 

 When the temperature in the valve increases, the pressure between the valve seat and the ball increases. Increased temperature creates greater friction between the valve ball and the seat. 

Eventually, the valve can become locked either open or closed. As the required torque increases, the valve seat is torn apart, and mechanical failure occurs.

Valve Seat Failure: Seat and Seat Carrier Design

The valve seat is one of the most critical components. However, poor seat design can lead to a shortened lifespan, leakage, or catastrophic failure. The catastrophic failure could lead to explosions or life-threatening damage in particular environments.

Soft seat valves typically use metallic seat carriers with the valve seats pressed into them. As with the seat design, the seat carrier design can have similar problems. If the seat carrier design is slightly off, it could make it difficult to determine where the problem lies.

Permanent Deformation

In high-pressure applications, the valve setting of soft seats is necessary. To correctly set soft seals, the valve is repeatedly actuated during part of the build process. This repeated actuation can cause permanent deformation during normal use.

A failure to understand the initial deformation will cause the valve to fail. It won’t fail on initial use, but it will eventually stop working, and the valve will either need to be rebuilt or replaced as a result.

Valve Seat Failure Conclusion

Whether your valve requires PTFE, PEEK, or any other material, you want to ensure you get the appropriate material for your valve seat. Incorrect materials and excessive friction, seat design malfunctions, and permanent deformations can cause failures. 

Contact us today to learn more about the valve seats we offer and assist you in finding the appropriate material for your applications.