by Denise Sullivan Denise Sullivan No Comments

Molded PTFE Billets: An Overview

Molded PTFE Billet

Teflon (PTFE) billets are compression molded tubes and rods made of Polytetrafluorethylene used in numerous industrial applications covering almost every industry, including chemical processing, automotive, food, aerospace,  medical device, semiconductor, and fluid handling. These functional parts are popular due to Teflon’s chemical resistance, extreme temperatures, low friction properties, and ability to mold them into the precise shape and size needed.

Types of Molded  PTFE Billets

The molded processing techniques we employ are compression, isostatic, and automatic. The determination of which method to use will depend on the type and size of billets being produced, the industry they are being used in, and the manufacturer’s preference.  

Compression

Compression molding for PTFE  billets is one of the three main processes, with isostatic and automatic as the other options (we will discuss these in a later article). To make a billet using this process, one must design and create the source mold for the rod or tube. The compression mold is a two-part mold that includes a preform component.

The performance has the same shape as the tube or rod being processed.  The material is loaded into the mold, pressed under specific pressure and time depending on the grade of PTFE being processed, and then ejected for the mold. 

The pressure causes the material inside the preform to conform to the mold’s shape. As a result, any excess material leaks out of the mold. Once the molding process is complete, the billet is ejected from the mold.

Once the billet is extracted from the mold, it is now in what is called the “Green State,” compact into the desired shape, but no molecular change has occurred; this only happens after sintering in our ovens for a designated time between 650 to 715 degrees F. 

The billet is left to cool at room temperature. Once cooled, excess material can be machined off to make a smooth, perfectly formed Teflon billet. 

Advantages of using compression molding include:

  • Strong parts
  • Lower tooling costs
  • Broad design options
  • Lower waste generation
  • Large part manufacturing

Sintering Molded Tubes, Rods, or Semi-Finished Parts.

Sintering results in a change in the PTFE powder that reorganizes the molecules into a compound. To sinter Teflon billets:

PTFE Powder

 

  • Temperatures must be between 675°F and 700 °F (357°C and 371°C).
  • The oven must have good airflow.

  • Billets must be supported to ensure that they do not sag

Adding an annealing cycle during the sintering processes will help to stop cracks from forming while the compound bakes. Once the billets are out of the oven and cooled to room temperature, they can be machined.

Molding Process

While all molds have physical property variations, the overall process is similar. Therefore, the variations between compression, isostatic, and automatic molded billets are inconsequential to the prevalent use. 

The molding process is two-step. It begins with packing the mold and pressing the powder,  called the “green state.” Next, the mold is placed under specified pressures depending on whether the material is unfilled (Virgin) or filled with various fillers, glass, carbon, graphite, etc. pressure of up to i.

After pressing, the item is removed from the mold. Workers must be careful during the ejecting of the tube or rod. Mishandling of the green material could result in cracks. Once the mold is removed, the billet is sintered.

conclusion

Molded PTFE billets are ideal for many industries. The properties of PTFE make them chemical resistant, have a low coefficient of friction, and can be manufactured compliant with FDA, Class VI Medical, NACE, Aerospace, and Semiconductor  Standards approved for use in medical and food industries. In addition, clean Room Molding for Ultra Pure applications is available.

by Denise Sullivan Denise Sullivan No Comments

Virgin Teflon Balls vs. Glass-filled Teflon Balls: What You Need to Know

virgin teflon balls

At first glance, it might appear that the Teflon Balls are the same as the glass-filled ones. However, closer inspection reveals that the two materials have very different properties. Both virgin Teflon balls and glass-filled Teflon balls have unique properties, making them ideal for different applications.

This article will explore the differences between virgin and glass-filled Teflon balls.

Virgin Teflon Balls

Virgin Teflon balls can be either hollow or solid. Both offer the benefits of being lightweight and ideal for light load-bearing applications. These balls do not require lubrication and, unlike metal balls, are not magnetic and provide heat and electrical insulation.

The strengths of virgin Teflon balls include:

  • Weathering resistance
  • Solid PTFE balls are resistant to corrosion
  • Chemically resistant to all common solvents
  • Thermal resistance
  • Low smoke and toxic gas emissions
  • Abrasion, fatigue, and radiation resistant
  • Can be used in extreme conditions

 Applications

There are several applications in which virgin Teflon balls are the ideal choice. As it is ideal for light load-bearing applications, it is ideal in pump and valve components. Thanks to its electrical insulation properties, it is often used in electrical components.

Other applications where virgin Teflon balls are used include:

  • Sealing
  • Bushing
  • Food processing 
  • Medical device components

Properties

Virgin Teflon balls are generally white or off-white in color. In their natural state, Teflon balls are heavier than water. Other properties include 

 

Properties Unit Method Typical Value
PHYSICAL
Density g/cm3 ASTM D792 2.14-2.18
Hardness points ASTM D2240 51-60
Tensile Strength MPa ISO 527 ≥ 20
Elongate at Break % ISO 527 ≥ 200
Compressive strength at 1% deformation psi ASTM D695 580-725
Impact strength Izod J/m ASTM D256 153
TRIBOLOGICAL
Dynamic Coefficient of Friction / ASTM D1894
ASTM D3702
0.06
Wear Factor K / ASTM D3702 2.900
PV limit at 3 m/min

             at 30 m/min

             at  300m/min

N/mm2 * m/min / 2.4

4.2

5.7

THERMAL
Service Temperature °F / -328/+500
Thermal expansion coefficient (linear) 25-100°C 10-5 in/in/°F ASTM D696 6.625-7.206
ELECTRICAL
Dielectric strength  (specimen 0.5mm thick) KV/mm ASTM D149 ≥ 40
Dielectric Constat at 60 Hz and 106 Hz / ASTM D150 2.05-2.10
Volume Resistivity Ω * cm ASTM D257 1018
Surface Resistivity ASTM D257 1017

 

Glass-Filled Teflon Balls

Glass is one of the most common fillers in filled Teflon balls. The filling typically ranges from 5 to 40%. Typically glass-filled Teflon balls are used instead of virgin Teflon balls because these components are stronger, and their compression and wear properties are an improvement.

The strengths of glass-filled Teflon balls include

  • Improved resistance to wear over standard solid PTFE balls
  • Resistant to oxidation and acid
  • High hardness rating
  • High maximum operating temperature
  • Increased compressive strength
  • Low coefficient of friction
  • HIgh UV Light resistance
  • Lower thermal expansion
  • Lower deformation under load

Applications

As with virgin Teflon balls, glass-filled PTFE can be used in many different fields. Some of the more common applications include

  • Petrochemical application
  • Commercial application
  • High-load industrial applications
  • Material handling
  • Precision part manufacturing 
  • Chemical engineering applications

Properties

The properties of glass-filled, carbon-filled, stainless steel, and bronze vary slightly. Understanding the difference will help you know which product is the best choice for each application.

For 25% glass-filled Teflon balls, typical properties include:

Properties Unit Method Typical Value
PHYSICAL
Density g/cm3

lb/in3

ASTM D792

ASTM D792

2.25

0.081

Hardness / ASTM D785 Shore D60
Tensile Strength psi ASTM D638 2100
Elongate at Break % ASTM D638 270
Compressive strength  psi ASTM D695 1000
Flexural strength psi ASTM D790 1950
TRIBIOLOGICAL
Dynamic Coefficient of Friction / ASTM D1894

0.5
Static Coefficient of Friction / ASTM D1894 0.12
THERMAL
Maximum Continuous Operating Temperature °F

°C

/ 260

500

Minimum Continuous Operating Temperature °F

°C

/ -200

-328

Melting Point Temperature °F

°C

ASTM D3418

ASTM D3418

635

335

Thermal expansion coefficient (linear) 25-100°C 10-5 in/in/°F ASTM D696 6.4
ELECTRICAL
Dielectric fACTOR AT 1MHz / ASTM D150 2.4
Dielectric Constant at 1 MHz / ASTM D150 0.05
Surface Resistivity Ω * cm ASTM D257 >105

 

15% glass-filled Teflon balls properties are:

Properties Unit Method Typical Value
PHYSICAL
Density g/cm3

lb/in3

ASTM D792

ASTM D792

2.15-2.25

0.0777-0.0813

Hardness / ASTM D2240 60-64
Tensile Strength psi ASTM D638 2490-3700
Elongate at Break % ASTM D638 250-280
Compressive strength  psi ASTM D695 853-925
Impact strength Izod J/m ASTM D256 14.0-15.5
TRIBIOLOGICAL
Dynamic Coefficient of Friction / ASTM D1894

0.060
Static Coefficient of Friction / ASTM D1894 0.050
THERMAL
Maximum Continuous Operating Temperature °F

°C

/ 518

270

Minimum Continous Operating Temperature °F

°C

/ -436

-260

Thermal expansion coefficient (linear) 25-100°C 10-5 in/in/°F ASTM D696 8.9-12.7
ELECTRICAL
Dielectric factor at 1MHz kV/mm ASTM D149 16.0-19.0
Dielectric Constant at 1 MHz / ASTM D150 2.3-2.5
Surface Resistivity Ω * cm ASTM D257 >1015

 

10% carbon filled

Properties Unit Method Typical Value
PHYSICAL
Density g/cm3

lb/in3

ASTM D792

ASTM D792

2.25

0.081

Hardness / ASTM D785 63
Tensile Strength MPa ASTM D1457 15
Elongate at Break % ASTM D1457 180
Compressive strength  MPa ASTM D695 100
TRIBIOLOGICAL
Dynamic Coefficient of Friction / ASTM D1894

0.12-0.14
Static Coefficient of Friction / ASTM D1894 0.14-0.16
THERMAL
Maximum Continuous Operating Temperature °F

°C

/ 260

500

Minimum Continuous Operating Temperature °F

°C

/ -200

-328

Melting Point Temperature °F

°C

ASTM D3418

ASTM D3418

635

335

Thermal expansion coefficient (linear) 25-100°C 10-5 in/in/°F ASTM D696 9.5 x 10-5
ELECTRICAL
Dielectric factor at 1MHz / ASTM D150
Dielectric Constant at 1 MHz / ASTM D150
Surface Resistivity Ω * cm ASTM D257 >103

 

Bronze filled (40%) PTFE balls have a specific gravity of 3.0-3.12g/cm3 and a tensile strength of 22-27 Mpa, with a hardness of 65-68. Stainless steel-filled PTFE has a specific gravity of 3.35 g/cm3, a tensile strength of 22 Mpa, and a harness of 65-69.

Which Is Best?

Both virgin and glass-filled Teflon balls have their benefits. The ultimate choice of which ball you should use depends on the environment you are working in and your basic equipment needs.

Ready to learn more? Contact us today to learn about the types of Teflon balls we offer and which choice best meets your needs.