by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Injection Molding of Fluoropolymers: What You Need to Know

Injection Molded Parts

Fluoropolymers are used in multiple industries, including aerospace, transportation, chemical and petrochemical processing, pharmaceutical, medical, telecommunications, and electronics where they are used for seals, gaskets, bushings, bearings, hoses, tubing, wiring, and even fiber optic cladding. There are multiple ways to manufacture parts and components made from fluoropolymers, and injection molding is one of them.

What Are Fluoropolymers?

Fluoropolymers, as the name no doubt implies, are polymers that are based on bonding between fluorine and carbon. The first fluoropolymer was PTFE (polytetrafluoroethylene), which is perhaps better known by its trade name Teflon. Other common fluoropolymers include ETFE (ethylene tetrafluoroethylene), PFA (perfluoroalkoxy alkane), PVDF (polyvinylidene fluoride), PVF (perfluoralkoxy), FEP (fluorinated ethylene propylene), and ECTFE (ethylene chlorotrifluoroethylene).

They are popular materials because of their properties that include resistance to high temperatures, chemical attacks, and electrical current. They are also low friction, non-toxic, exhibit minimal aging and leaching of chemicals, and non-stick. In addition, many fluoropolymers are biocompatible, making them ideal for medical applications.

Injection Molding Process

Injection molding is a manufacturing method for thermoplastic materials where the plastics are heated almost to their melting point and then fed into aluminum or steel molds at extremely high pressures using a powerful screw mechanism. There are several benefits to injection molding:

  • Can handle high-volume production
  • Labor costs are relatively low
  • Products highly accurate parts that can meet tight tolerances
  • Consistent results
  • Supports fairly complex designs with fine details
  • Produces an excellent surface finish
  • In many instances, the scrap can be recycled

The major cost involved in injection molding is the tooling: to achieve good results, the molds must be high-quality and well designed. However, molds can be configured to make multiple parts at one time with minimal post-processing.

Note that injection molding can be used to manufacture otherwise challenging components, including thin-walled parts. The feasible envelope for parts can typically range from 0.01 in³ to 80 ft³ (depending on the fabricators’ capabilities) and can achieve tight tolerances and smooth surfaces.

Injection Molding Fluoropolymers

While fluoropolymers can be challenging to injection mold, the process is not impossible for most materials. Some of the best fluoropolymers for injection molding include PFA and FEP, which are both melt-processable. Additional consideration may have to be given to the tooling for molding fluoropolymers, including a hot runner system to keep the polymer flowing easily as it moves through the mold. 

PTFE, however, is challenging to injection mold because even when heated above its melting point because it simply will not flow like other thermoplastic polymers. It does soften, but not enough to make injection molding possible. Fortunately, there are several other options when it comes to manufacturing with PTFE, including machining, compression molding, cold extrusion, and isostatic pressing.   

Conclusion

Fluoropolymers are widely used in many different industries and applications. If you are looking for an effective way to reliably manufacture components using a fluoropolymer, injection molding may be an excellent option.

Want to learn more? Contact us today!

by Jackie Johnson Jackie Johnson No Comments

The Different Types of 3D Printing

3D printing has seemingly taken over the world! Because of it’s increasing popularity with both manufacturers and hobbyists, more and more 3D printers are being produced each year. There also many different types of 3D printing technologies, which vary in cost, effectiveness, materials used, speed and cost. These include:

  • Stereolithography (SLA)
  • Selective Laser Sintering (SLS)
  • Fused Deposition Modeling (FDM)
  • Digital Light Process (DLP)
  • Multi Jet Fusion (MJF)
  • Direct Metal Laser Sintering (DMLS)
  • Electron Beam Melting (EBM)

Because there are quite a few, we will be breaking this post into two parts, with the next part coming next week, so stay tuned! 

In the meantime, let’s discuss some 3D printing methods!

FDM Printing

FDM Printing

FDM

Fused Deposition Modeling (FDM) is one of the most widely available 3D Printing technology today. It uses a process called material extrusion, where a solid material, usually some form of thermoplastic (PLA, ABS, PET, etc.) is pushed through a heated nozzle attached to the printer head, melting the material. As the printer head moves along specific coordinates, it deposits the material, where it cools and solidifies, forming a solid object. 

  • Relatively Inexpensive
  • Ease of Use
  • Wide Variety of Materials

SLA

Stereolithography (SLA) uses a printing method called vat polymerization, where a material called photopolymer resin is exposed to an ultraviolet laser, which is used to draw pre-preprogrammed designs or shapes onto the material. This process is repeated for each layer until a 3D object is completed, and then washed in a solvent to remove excess resin. Because of this, SLA printing is often messy. You are also restricted to printing with resin materials, which can be expensive. The benefits, however, include:

  • Higher quality prints than FDM
  • Faster Print Speed
  • Stronger Finished Products

SLA Printer

SLS

Selective laser sintering (SLS) uses a laser to sinter powdered material together until a 3D model is formed. Unlike FDM and SLA, which have become incredibly popular in the hobbyist market, SLS has remained mostly in the realm of industrial manufacturing, because of the high cost (and potential dangers) of the lasers and materials. There are many advantages to SLS printing, including: 

  • The ability to print objects without support structures. 
  • High Strength and Stiffness
  • Good Chemical Resistance
  • Incredibly fast print speed

Stay tuned for next week for part two, where we discuss even more 3D printing methods!