by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Rotary Shaft Seals in the Oil and Gas Industry

Seals in the oil and gas industry face some of the most intense challenges, HPHT (High Pressure, High Temperature) and corrosive media. Trying to find the right rotary shaft seal for such an application can be challenging but is far from impossible.

Introduction to Oil and Gas Seals

Seals are needed in many different areas of the petrochemical industry. They can be found in compressors, motors, gearboxes, pumps, top drives, and steam turbines. Seals are required for mixers, extruders, fans, cooling towers, and blowers. Swivel stacks, wellhead connectors, subsea connectors, and rotary drill bits are also in need of reliable seals to do their job safely and effectively.

And whether these seals are for upstream, midstream, or downstream petrochemical processing, they often serve in a critical application: when a seal in the oil and gas industry fails, it is more than an inconvenience. Seals failures can quickly prove devastating to personnel, the equipment, and the environment. And the costs of seal failure can easily extend beyond equipment downtime and repair costs, as there may be fines related to environmental damage as well as costly lawsuits and out-of-court settlements involved.

With all that said, it can be agreed that seals for rotary shaft applications must be especially reliable, extremely rugged, and able to provide excellent performance in some of the most hostile operating environments in existence.

Spring-Energized Seals

Spring-energized seals include a spring energizer that keeps the seal lip in contact with the sealing surface when other seals would fail. They can maintain a seal even in the presence of wear, out of roundness, eccentricity, and runout. In addition, spring-energized seals outperform traditional lip seals in extreme pressures (including vacuum pressures) and extreme temperatures (including cryogenic temperatures). 

Most oil and gas applications using spring-energized seals take advantage of canted coil springs and their ability to provide a consistent load on the seal lip over a wide deflection range. In addition, canted coil springs are also highly resistant to damage unless they are stretched upon installation.

Labyrinth Seals

Labyrinth seals do an excellent job of sealing and are very effective at contaminant exclusion. They accomplish this through a barrier with a complicated set of maze-like paths (hence the term “labyrinth”) that (1) restricting the clearance through which leaks can occur and (2) creates areas of turbulent flow and high flow friction to further prevent leaks and contamination.  They are considered a dynamic mechanical clearance seal.

One of the benefits of labyrinth seals is their ability to provide sealing without making contact with the sealing surface. This means they experience far less wear than traditional lip seals and generate less frictional losses, as well. They are highly efficient, extremely reliable, and are even easy to install.

Seal Materials

Rotary shaft seals can be exposed to highly corrosive chemicals including methanol, H2S, aromatic hydrocarbons, oil, and supercritical CO2. Many of the chemicals that seals must interact with are also highly flammable gases and liquids. Operating temperatures can range from cryogenic below zero temperatures all the way up to 800°F, depending on the application and media involved. To complicate matters further, some liquid products are handled near their vapor temperature where they can unexpectedly flash into vapor. In addition, the materials used need to be resistant to chemical permeation while also being extremely wear-resistant and flameproof.

Two options typically lie at the top of the list for seal jacket materials: PEEK and PTFE. Both of these high-performance polymer materials are extremely compatible with a wide range of chemicals. They offer excellent performance in the HPHT environment found in most oil and gas applications: PEEK has a maximum operating temperature of  500°F and PTFE can handle temperatures up to 575°F. They also perform well in below-zero cryogenic temperatures, such as those used with LNG.

These engineering polymers are also wear-resistant and flame resistant with low coefficients of friction and thermal expansion. In addition, they are dry-running so no additional lubricants are required.  And PEEK in particular offers excellent performance even in sour gas environments, which often destroys other seal materials.

For spring-energized seals, both PEEK and PTFE are excellent choices. For labyrinth seals, however, PEEK or Flourosint (enhanced PTFE) usually performs more effectively. And keep in mind that these materials can be enhanced with fillers to increase their mechanical properties, including stiffness, strength, and wear resistance.

Conclusion

When traditional rotary shaft lip seals fail in oil and gas operations, consideration should be given to spring-energized seals and labyrinth seals combined with PTFE, PEEK, or enhanced PTFE. This combination of sealing technology and engineering polymers can provide the reliable performance needed in critical applications where seal failure is simply not an acceptable option. Both types of seals and the materials described here have proven performance records for their ability to handle the rugged, corrosive, HPHT environments of the petrochemical industry.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Encapsulated O-Rings for Cryogenic Applications

In cryogenic temperatures, most O-rings become brittle and fail. Many times cryogenic applications can also involve media that is not chemically compatible with traditional elastomeric materials. However, for axial sealing applications, there is an effective, dependable solution: encapsulated O-rings. 

What is an Encapsulated O-Ring?

In short, encapsulated o-rings combine the chemical resistance and extreme-temperature performance of FEP or PFA with the elasticity and resilience of silicone, FKM, or stainless steel energizers. Stainless steel springs or rugged elastomers are encapsulated within a durable, chemically resistant jacket made from FEP (fluorinated ethylene propylene) orPFA (perfluoro alkoxy copolymer). These o-rings are used with valve stems, flanges, joints, swivels, pumps, turbo expanders, and waterless fracking.

Materials Used With Encapsulated O-Rings

For the outside of the O-ring, the most popular materials currently in use are FEP, PFA, and PTFE. FEP is highly resistant to chemical attack, offers a low compression set, and has a low coefficient of friction. Its operating temperature range is -420°F through 400°F and is less expensive than PFA. In addition, FEP is available in FDA-approved grades. 

PFA is resistant to a wide range of corrosive chemicals, including naphtha, acid, aromatic solvents, petroleum, and alcohol. It has a wider operating temperature range than FEP, from -420°F through 500°F. It also possesses a low compression set and resistance to cracking and stress in addition to a higher overall mechanical strength when compared to FEP. It is also available in grades that have the following approvals: USP IV, FDA-compliant, EU Reg. 1935/2004, ADI-free, and 3-A Sanitary Standards.

The materials used for the interior energizer of encapsulated o-rings include 302 stainless steel for spring energized as well as silicone, FKM (trade name Viton), or EPDM. Whether its a spring-energized approach or a core of silicone, FKM, or EPDM, the interior of the encapsulated o-ring provides the additional resiliency that makes these o-rings so effective for cryogenic applications. Note that silicone and FKM ensure an even pretensioning at the sealing point.

Silicone provides a softer core than FKM and offers very good cold flexibility. Using FKM as the core material means that the o-ring will be able assume its original shape very quickly after installation/deformation due to its outstanding compression set characteristics. It is not, however, as temperature resistant as silicone. While EPDM can be used as a core material, it is not recommended because of how it reacts to the heat involved in manufacturing the encapsulated o-rings.

Solid-Core vs Hollow-Core Encapsulated O-Rings

The two basic types of encapsulated O-rings are solid core and hollow core. Solid core o-rings have an energizer made from either silicone or FKM (fluoroelastomer, trade name Viton). Both types of cores provide good elasticity and low compression set, but when used in cryogenic applications silicone is usually the better choice because it remains more flexible at lower temperatures. Hollow-core encapsulated o-rings, on the other hand, are used when there is a need for extreme elasticity or for fragile applications. 

Advantages of Encapsulated O-Rings

There are several advantages to using encapsulated O-ring, besides the fact that they  can outperform traditional seals in harsh environments that can include extreme temperatures and corrosive media. These o-rings are …

  • Chemically resistant
  • Available in non-contaminating and FDA-approved materials
  • Low coefficient of friction that prevents issues with stick-slip behavior
  • Low permeation
  • Excellent corrosion resistance
  • Low compression set
  • Excellent service life
  • Reliable sealing
  • Cost effective

Encapsulated O-Rings for Cryogenic Operating Environments

For cryogenic environments, the best approach to encapsulated O-rings is the use of FEP or PFA exterior with a steel flat wound ribbon spring at the core. This configuration can handle cryogenic temperatures all the way down to -420°F and pressures up to 3000 psi as long as vented holes are placed in the FEP jacket to prevent dangerous blowouts. These encapsulated o-rings work best in static and slow dynamic applications and are ideal for applications that involve cryogenic media such as liquid oxygen, liquid nitrogen, hydrogen. These encapsulated o-rings are readily available in both metric and US cross-sections and a wide range of diameters.

Conclusion

For cryogenic applications where traditional o-rings have failed, encapsulated o-rings with an FEP/PFA exterior and a 302 stainless flat wound ribbon at the core is an excellent option. It has already been successfully used by NASA in not one but several successful rocket launches and has been incorporated into designs by Lockheed and Boeing.