by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Seals for Cryogenic Valves

The ability of cryogenic seals to maintain integrity is often critical not just for the processes involved but for the safety of humans, other equipment, and the environment. Seal failure could lead to expensive damage, hefty lawsuits, and even loss of life. Finding reliable solutions that can handle cryogenic temperatures and the pressures involved is challenging but not impossible.

Read more

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

PCTFE Ball Valve Seats for Low Permeation Applications

Ball valve seats that show signs of swelling, blistering, or “popcorning” have been permeated at a molecular level. Needless to say, this can cause some serious issues such as leaks and catastrophic failure. The solution is to find a ball valve seat material that is highly resistant to permeation and an excellent choice would be PCTFE. In this week’s blog post, we will talk about PCTFE Ball Valve Seats and how they are used in Low Permeation Applications.

Introduction

Certain types of media may permeate the ball valve seat, leading to swelling, blistering, and leakage. Applications such as chemical processing and petrochemical transport may require a seat material that is resistant to permeation but still exhibits key properties such as low friction, compressive strength, and resistance to deformation is still needed.

How Permeation Works

Permeation refers to the molecular level penetration of gases, vapors, and liquids through a solid material via diffusion. In diffusion, molecules pass from an area of high concentration to an area of low concentration. This can be extremely problematic when a ball valve is being used because of the potential distortion and leaking of the ball valve seat.

Keep in mind that permeation can take place through a surprising variety of materials, including metals and polymers. In addition, some materials are only semipermeable, which means that only ions or molecules with certain properties can pass through the material. 

The rate of permeation is directly related to crystal structure and porosity, which is why factors such as density and molecular structure are important when selecting materials for applications where low permeation is important. 

Why Permeation is a Problem for Ball Valve Seats

Gas permeation can not only compromise gas stream purity but also result in dimensional changes of the ball valve seat. One form of these dimensional changes is swelling, which can occur if the permeating media becomes a part of the molecular structure of the material. In reinforced polymers, such as glass-reinforced PTFE, swelling can cause separation between the glass fibers and the PTFE matrix. 

Another common manifestation of permeation is referred to as “popcorning” or “popcorn polymerization” which occurs due to a polymeric chemical reaction. And among the most notorious source of problems with popcorning and swelling are monomers with extremely small molecular sizes such as Butadiene and Styrene.

Both popcorning and swelling will lead to leakage, and over time popcorning will completely destroy the ball valve seat. This makes the choice of ball valve seat materials extremely important for applications where this is a problem.

PCTFE for Low Permeability Ball Valve Seat Applications

One of the best materials for a ball valve seat application where permeability is a problem would be PCTFE (Polychlorotrifluoroethylene), a thermoplastic chlorofluoropolymer. PCTFE is sometimes referred to as Modified PTFE or PCTFE, as well as by trade names Kel-F, Voltalef, and Neoflon. PCTFE is often thought of as a second-generation PTFE material that maintains the chemical and thermal resistance of PTFE along with its low friction. It is also similar to other fluoropolymers such as PFA or FEP.

One of the defining characteristics of PCTFE is that it has a much more dense molecular structure and a low void and micro-porosity content when compared to similar ball valve seat materials. This gives it a very low permeability coefficient, which means that the likelihood of it swelling or popcorning is far lower than other materials. For example, its permeability for O2, N2, CO2, and H2 are 1.5 x 10-10, 0.18 x 10-10, 2.9 x 10-10, and 56.4 x 10-10 darcy, respectively.

PCTFE also provides improved toughness and strength along with good deformation recovery and excellent creep and cold-flow resistance. In addition, it has a wide operating temperature range of -100°F to 500°F. In fact, it performs extremely well at cryogenic temperatures. Because of its low friction, it also results in a very low ball valve operating torque. PCTFE also exhibits zero moisture absorption and is non-wetting. 

PCTFE works well in operating environments where other polymers may fail. For example, it is well adapted to nuclear service that may involve high radiation exposure, is non-flammable (D 635), and is resistant to attack by the vast majority of chemicals and oxidizing agents. The only chemicals that might lead to slight swelling are ethers, esters, aromatic solvents, and halocarbon compounds.

In addition to its use in applications requiring low permeability, PCTFE is also considered an excellent choice for applications that need a low-outgassing material and is commonly used in semiconductor applications. Also note that there are PCTFE grades that are FDA approved, such as Fluorolon PCTFE 2800. 

Conclusion

Fuel processing and transport, chemical processing, petrochemical systems, and emissions control are just a few of the applications where low permeation materials may be necessary. For such applications, PCTFE is an excellent option for ball valve seat materials because it combines the basic properties necessary for a seat with an extremely low rate of permeation.

If you need a solution to blistering, swelling, or popcorning of a ball valve seat, contact the experts at Advanced EMC. Our sealing team will work with you to find the right ball valve seat material for your application.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

The Basics of Ball Valve Seat Materials

Ball valves play a critical role in controlling the flow of fluid and pressure within a pipeline, but their effectiveness and safety is only as good as the seat material used. In this blog post, we are going to review the basics of five commonly used ball valve seat materials.

Ball Valves

Whether found in a petrochemical application where a leak could be environmentally devastating, or in a pharmaceutical laboratory where cleanliness and sanitation are critical, ball valve seats must be reliable and robust. A ball valve consists of the body of the valve, the body cap, the stem, the hollow ball, and the round ball valve seat. 

The ball valve seat is responsible for sealing the fluid inside and uniformly distributing the seating stress. In soft seat ball valve designs, either an elastomer or polymer is used as the seal and are inserted into a metallic seat ring. This approach, as opposed to hard seat ball valves, is popular because it provides good sealing action, is lighter weight, and more cost effective. 

Key Properties of Ball Valve Seat Materials

When choosing a polymer material for a ball valve seat, there are numerous factors that are involved. Key material properties include …

  • Sufficient ductility to provide a reliable seal
  • Dimensional stability to ensure the ball valve seat retains its shape for reliable sealing and performance
  • Very low friction to keep stem torque at a minimum
  • Low coefficient of thermal expansion so that the ball valve seat retains its shape when temperature changes occur
  • Excellent wear resistance for a long service life
  • Chemical compatibility with all media involved 

In some operating environments, it is also important that ball valve seat materials exhibit these properties:

  • Low moisture absorption to prevent dimensional changes in the presence of water or high humidity
  • Maintain performance with repeated sterilization that can include hot water, steam, and harsh cleaning chemicals
  • Good performance in the presence of sudden decompression (i.e., pressure drops over 650 psi)

Recommended Materials for Ball Valve Seats

There are several materials that work well as ball valve seats, including acetal, PEEK, PTFE, TFM, and UHMW-PE.

Acetal Ball Valve Seats

When aggressive environments are involved, Acetal (also known as Delrin) is often used. Acetal provides excellent wear resistance, is very rigid, has good toughness, and is resistant to cold flow. Although its operating temperature range is not very wide (-70°F to 180°F), it can handle pressures up to 5,000 psi. Acetal also works well in radioactive environments  but should not be used with oxygen flow.

PEEK Ball Valve Seats

PEEK offers excellent chemical resistance, very low friction, self-lubrication, and is flame retardant while also possessing a wide operating temperature range (from -70°F to 550°F). It can handle very aggressive applications and works well when there is a need for hot water and steam exposure–but does not do well in the presence of sulfuric acid.

In addition, PEEK is very well adapted to nuclear applications and is available in FDA-approved grades as well as filled grades with improved wear properties and better thermal conductivity. Note that PEEK is usually chosen for ball valve seats when the operating temperature range is outside that of PTFE.

PTFE Ball Valve Seats

PTFE (also known by its trade name, Teflon) has many of the same properties as PEEK, but involves even lower friction, dry running capabilities, and more extensive chemical compatibility. Like PEEK, it is available in FDA-approved grades and can handle cryogenic temperatures down to -50°F and high temperatures up to 550°F as well as pressures up to 5,000 psi.  \

Also like PEEK, PTFE can continue to perform even when repeatedly exposed to hot water and steam. Keep in mind, however, that PTFE does not perform well in the presence of fluorine or alkalies. PTFE is also very easy to clean and available in glass or carbon-reinforced grades that can provide improved wear characteristics, less propensity to cold creep, and lower thermal conductivity. 

TFM Ball Valve Seats

TFM (sometimes referred to by the brand name Dyneon) is a second-generation PTFE material that combines the best properties of PTFE (low friction, chemical resistance, high-temperature performance) with better stress recovery and the ability to handle higher pressures. It is also more elastic and resilient than PTFE. The operating temperature of TFM ranges from -100°F to 450°F and it is well adapted to applications involving steam and thermal fluids.

UHMW-PE Ball Valve Seals

UHMW-PE, which stands for Ultra-High Molecular Weight Polyethylene, has a low coefficient of friction, an operating temperature ranging from -70° F to 200°F, good chemical resistance, good dimensional stability, and good abrasion resistance. In general ball valve seats made from UHMW-PE can handle pressures up to 1,500 psi and can handle low to medium levels of radiation exposure.

Conclusion

Ball valve seals are used in many different industries, including chemical processing plants, oil and gas operations, manufacturing facilities, food preparation, and even residential use. As a leak-proof means of pressure and flow control, their smooth and reliable operation is critical–which is why polymer materials work extremely well for ball valve seats. If you are in the market for a ball valve seat material, contact the experts at Advanced EMC. We can put our years of experience to work for you, helping you select the right material for your project.

 

by admin admin No Comments

Ball Valve Seats – 9 Significant Purchasing Options


 

ball-valve-seat-diagramMost ball valve seats are made of a polymer material primarily because of their elasticity, which it vital for achieving a good seal. They perform well at low pressure differentials, provide low operating torques, and usually have low coefficients of friction.  Let’s look at some materials that are being used for ball valve seats.

 

9 Significant Purchasing Options for Ball Valve Seats

 

Option 1:

One of the most popular choices for a ball valve seat material is PTFE because of its…

Read more