by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

How PTFE and PEEK Enable Reliable Sealing Across Extreme Media

In the world of advanced sealing, few materials can match the resilience and versatility of PTFE and PEEK. When systems operate at temperatures below –200 °C or handle chemicals capable of dissolving most polymers, seal failure is not an inconvenience—it’s a critical risk. In such environments, the combination of PTFE and PEEK enable reliable sealing performance that remains stable, predictable, and long-lived.

This blog post focuses on key features of PTFE and PEEK that make their sealing solutions a good choice for extreme media and reviews applications where these materials excel.

The Challenge of Sealing Across Opposing Extremes

Designing a seal for cryogenic and/or corrosive service is an exercise in contradiction. At extremely low temperatures, most polymers become brittle and lose their ability to conform to mating surfaces. Under high heat or chemical exposure, others swell, creep, or break down at the molecular level. Even metals typically  lack the elasticity or chemical resistance required for tight dynamic sealing.

True reliability comes from materials that can maintain their properties across this spectrum—retaining flexibility near absolute zero while withstanding oxidative and acidic environments at elevated temperatures. This is precisely where PTFE and PEEK excel.

PTFE: The Chemical Inertness Benchmark

Polytetrafluoroethylene (PTFE) serves ast the industry standard for chemical resistance and thermal stability. With its fully fluorinated carbon chain forms, PTFE is one of the most inert polymer molecular structures known. It is impervious to nearly all solvents, acids, and bases. Its operating range is from –250 °C to +260 °C, and PTFE is able to maintain low friction and minimal surface adhesion even in the harshest conditions.

In dynamic seals, its extremely low friction and self-lubrication allows results in lower torque, reduced stick-slip, and minimal wear against counterfaces. In addition, cryogenic engineers value PTFE’s ability to retain elasticity at temperatures that render most elastomers and many polymers extremely brittle. In chemical processing, it functions as a barrier material, protecting metallic components from corrosive attack.

However, unfilled PTFE has its limits. Under continuous load, it can creep or cold-flow, gradually losing preload. Engineers address this with fillers such as glass, graphite, carbon, or bronze, with each improving compressive strength and wear resistance. These modifications allow PTFE and PEEK enable reliable sealing designs to meet performance expectations in applications ranging from cryogenic valves to aggressive chemical reactors.

PEEK: Structural Integrity Under Pressure

Polyether ether ketone (PEEK) seems to complement the properties PTFE by offering exceptional mechanical strength and outstanding dimensional stability. Where PTFE provides chemical inertness, PEEK contributes structural endurance. Its semi-crystalline molecular structure gives it tensile strengths exceeding 90 MPa and excellent creep resistance maintained even at continuous temperatures approaching 250 °C.

In sealing systems, PEEK often serves as a backup ring, retaining element, or structural carrier for softer sealing materials. PEEK is excellent at resisting extrusion under high differential pressure and maintains shape when thermal cycling could otherwise deform conventional polymers. Chemically, PEEK withstands regular exposure to hydrocarbons, steam, and strong acids, thus making it indispensable in oil-and-gas and chemical processing environments.

Composite grades filled with carbon fiber, graphite, or PTFE further optimize tribological performance. These blends combine the toughness of PEEK with the low friction and self-lubrication of PTFE, thus ensuring smoother operation dynamic sealing solutions where where friction is critical.

PTFE and PEEK Performance Across Extreme Temperatures and Corrosive Media 

Engineers often use PTFE sealing solutions for operations that involve components, such as cryogenic hydrogen and oxygen valves, where lubrication must persist without freezing or outgassing. On the other hand, PEEK components dominate in high-temperature pumps and compressors exposed to sour gases, acids, or amine-laden fluids. 

Even in vacuum environments, PTFE’s extremely low outgassing helpts to ensure critical contamination-free operation. PEEK’s dimensional stability supports precise alignment and positioning even over extreme temperature ranges. Such mechaniacl properties can translate into longer service life, reduced maintenance cycles, and measurable operational cost savings, all of which are outcomes every engineer values.

Conclusion: Material Science at the Edge of Performance

When the operating conditions involve everything form cryogenic cold to corrosive heat, only a select group of polymers can deliver consistent performance: PTFE and PEEK. One offers unmatched chemical inertness and low friction; the other, exceptional mechanical integrity and pressure resistance. Working independently or in tandem, PTFE and PEEK enable reliable sealing in systems where failure is simply not an option.

For engineers designing valves, compressors, or actuators expected to survive the extremes, these two polymers represent more than material choices—they represent confidence. Through advanced formulations, precision machining, and innovative hybrid geometries, the limits of polymer sealing continue to expand.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Designing Spring-Energized Seals for Cryogenic Hydrogen Systems

Cryogenic hydrogen systems are among the most challenging to specify reliable sealing solutions for, with issues ranging from the extremely low temperatures to hydrogen permeability and embrittlement. 

This blog post explores the challenges and proposes a proven solution: PTFE spring-energized seals. And discusses how Advanced EMC can help.

Challenges of Sealing in Cryogenic Hydrogen Systems

There are several key problems that arise when specifying a sealing solution for a cryogenic hydrogen application. Four of these are discussed below.

Extremely Low Temperatures

The first issue with sealing cryogenic hydrogen is the temperature. On average, hydrogen is stored and transported at about  253 °C. At such low temperatures, conventional elastomers will lose elasticity, shrink, and possibly crack. In addition, thermal contraction will cause the seal contact pressure to drop. And just because a seal is predicted to work at room temperature, it will fail disastrously when the temperatures drop to H2 storage temperature. 

Hydrogen Permeability and Leakage Risks

Hydrogen is extremely small, with diatomic hydrogen being the smallest molecule in the known universe. This small molecular size means that  H2 can diffuse through many different materials. The resulting permeability leads to serious risks of leakage or even explosive decompression during warm-up cycles. Resolution of these issues includes sealing solutions with exceptionally high tolerance, with a seal lip material that maintains integrity even at the molecular level.

Hydrogen Embrittlement

Hydrogen embrittlement is a problem for many materials. In short, hydrogen can diffuse into metal components and make them increasingly brittle over time. This embrittlement leads to cracked metal seal housings. 

Material Compatibility

Many conventional seal materials will become unsuitable when cryogenic temperatures are reached. Examples include thermal expansion mismatches between components and a loss of flexibility, which are among the top problems. Material selection quickly becomes limited to options such as PTFE and certain fluoroelastomers because only a handful of materials can retain their flexibility, dimensional stability, and roughness at the temperatures required for handling H2.

Spring Energized PTFE Seal

Spring-Energized Seals for Cryogenic Hydrogen Systems

Spring-energized seals are advanced solutions composed of a polymer seal jacket with an internal metallic spring energizer. Because of the spring energizer, a consistent sealing force can be achieved even in the presence of issues such as dimensional shifts and contraction. 

A properly designed spring-energized seal can effectively maintain a seal in liquid H2 environments. Such a seal can handle pressure cycling and dimensional changes, and reduces friction and wear compared to conventional seals.

Here’s a summary of how a spring-energized seal with a PTFE / filled PTFE jacket addresses the challenges described thus far:

ChallengeProblemPTFE Cryogenic Seal Advantage
Low TemperaturesElastomers shrink, crack, and lose sealing force at –253 °C.PTFE stays flexible and dimensionally stable with low thermal contraction.
Hydrogen PermeabilityH₂ diffuses through many materials, causing leakage or decompression.PTFE has low gas permeability; spring-energized lips maintain tight contact.
Hydrogen EmbrittlementMetals become brittle and crack under hydrogen exposure.PTFE is immune to embrittlement and protects surrounding components.
Material CompatibilityMost materials fail due to brittleness or expansion mismatch.PTFE retains flexibility, stability, and chemical resistance at cryogenic temperatures.

Advanced EMC Spring-Energized Seals

At Advanced EMC, we specialize in PTFE spring-energized seals. We offer cryogenic-rated PTFE jackets that use corrosion-resistant metal allows, such as Hastelloy or Inconel, for the enclosed energizers. Precision engineering and manufacturing mean optimized hacket profiles for containing H2 and machining as needed to achieve an extended service life. We have developed sealing solutions for various industries, and offer tailored spring force, geometry, and material properties for spring-energized solutions.

Conclusion

Sealing cryogenic liquid H2 involves major challenges. The extremely low temperatures, hydrogen permeability, hydrogen embrittlement, and material compatibility all lead to problems that conventional sealing solutions do not address well.  Spring-energized PTFE seals, however, address these issues and more for a robust, rugged, and reliable solution.

Advanced EMC’s expertise ensures seals that meet the unique demands of cryogenic hydrogen systems, enabling safe, efficient use of hydrogen in advanced energy applications. Contact us today to learn more!