by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Rotary Shaft Seals for Automobiles

Even the simplest automobile requires a wide variety of seals, including rotary shaft seals. In this blog post, you will learn the basics of these seals within the context of the automotive industry, including the materials commonly used and why PTFE is so often recommended.

Rotary Shaft Seals

The goal of a rotary shaft seal is to prevent the leakage of oil, grease, and other fluids (e.g., transmission fluid, brake fluid, air conditioning refrigerant) while also keeping environmental contaminants out. These seals, sometimes called oil or grease seals, are used with bearings to keep lubricants within the bearing and environmental contamination out (i.e., lubrication retention). The term rotary refers to their ability to perform in the presence of both rotary and swiveling movements.

Where Rotary Shaft Seals Are Used in the Automotive Industry

Rotary shaft seals are a necessary part of many components and systems within cars, trucks, buses, high performance vehicles, and motorsports. And seals are needed for EVs (electric vehicles) and HEV (Hybrid Electric Vehicles) as well. These seals are also used with ATV (All Terrain Vehicles).  Some of the most common areas of application in automotive transportation are:

  • Air conditioning compressors
  • Braking systems
  • Pumps
  • Gearboxes
  • Power transmissions
  • Steering wheels

In most of these applications, the failure of a seal can lead to serious repercussions that include bodily injury, damage to the vehicle, and danger to those around the vehicle. Because of this, finding the right high quality seal for your application is extremely important.

Automotive Seal Operating Conditions

While the conditions for automotive rotary shaft seals do vary depending on their specific applications, the most common operating environments include …

  • Extreme temperatures
  • Environmental elements
  • Vibration and shock loadings
  • High contamination exposure
  • Chemical compatibility
  • Low friction
  • Wear resistance
  • Compliance with automotive standards

Environmental elements include exposure to sunlight, ozone, UV, and oxidation, all of which can accelerate the degradation of a seal. Contamination can include water, dirt, grease, and other debris, while the seals are likely to be exposed to materials such as diesel, hydraulic fluid, brake fluids, coolants, and chemical solvents. 

Materials Used in Rotary Shaft Seals

The basic components of a spring energized seal include a flexible inner seal lip that is bonded to a rigid outer component. In addition, some of these seals may include a spring energizer to keep the lip in contact with the sealing surface (note that spring-energized seals are most commonly used for oil retention as opposed to grease retention). Furthermore, some applications may require a seal with two lips where one serves as a wiper seal or dust lip to further prevent the ingression of contaminants.

The outer material for a rotary shaft seal is responsible for seal positioning and retention in the seal housing. This part of the seal is typically made from stainless steel, aluminum, or a rigid non-metallic composite material. 

The seal lip itself is made from either an elastomer or a polymer, with high performance PTFE being one of the most commonly used polymers. PTFE meets all the requirements for an effective, dependable seal lip, including the ability to handle high pressures, wide ranging chemical compatibility, extremely low friction, and excellent wear resistance. PTFE can also include additives such as carbon or MoS2 that can enhance properties such as strength, stiffness, wear resistance, and low friction.

Nitrile rubber (NBR, Buna-N) and polyacrylate rubber (ACM) are both widely used elastomeric materials for automotive rotary shaft seals. Another often used elastomer category is fluoroelastomers commonly referred to as FKM, Viton, and FPM. These offer superior performance compared to nitrile and polyacrylate, but they do cost more. 

PTFE Rotary Shaft Seals

At Advanced-EMC, we highly recommend the use of PTFE rotary shaft seals in the automotive industry where possible. They provide excellent performance in the harsh conditions often involved and are the most chemically compatible and low friction polymer on the market today. They can outperform elastomeric materials and are quickly replacing their use in many applications.

There are several grades of PTFE to choose from, including …

  • Virgin PTFE: light-duty service with slow speeds
  • 25% Glass-filled PTFE: wear and extrusion resistant but abrasive to shafts with a hardness less than 62C
  • 23% Carbon / 2% Graphite-filled PTFE: general purpose service where extrusion and deformation resistance are necessary
  • 15% Glass / 5% MoS2 filled PTFE: excellent wear resistance makes it well adapted to higher speed applications
  • Polyimide-filled PTFE: because of its low abrasion, works well with soft materials such as 300 SS and Aluminum
  • Modified PTFE: higher mechanical strength and better wear resistance

Conclusion

Rotary shaft seals can be found everywhere from the air conditioning to the power transmission system on a vehicle. Finding the right sealing solution that can handle the extremely harsh operating conditions and high temperature environments can be challenging, but PTFE has become one of the most popular choices for the seal lip material. 

If you are interested in an effective, reliable sealing solution for your automotive application, contact the knowledgeable team at Advanced-EMC today. Our engineers can work with you to find the right seal, made from the right materials, for even your most challenging designs.

 

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

All About Automolding

PTFE is an excellent material for many different applications and operating environments. Its low friction, chemical compatibility, and ability to maintain key properties at extreme temperatures has made it ideal for everything from seals in sterile food handling equipment to sleeve bearings in the harsh world of oil and gas

And there are several different options when it comes to manufacturing PTFE components, but not all methods are the same. In this blog post, we will be discussing auto molding in the context of manufacturing PTFE components.

What is Auto Molding?

Auto molding, as known as compression molding, is a popular manufacturing technique for making thermoset and thermoplastic parts–and one of the oldest plastic forming methods still in use. In short, auto molding uses compression and dies to form a near net shape polymer part. 

Where is Auto Molding Used?

There are numerous industries that depend on auto molded parts, such as aerospace, chemical processing, and the manufacture of semiconductors.

Auto molding is used to manufacture a wide range of parts, as well. These include …

  • Bearings
  • Bushings
  • Piston rings
  • Sleeves
  • Seals
  • Gaskets
  • Valves
  • Valve Seats
  • Diaphragms
  • Bellows
  • Electrical components

When compression molding of a PTFE part is done correctly, then you can depend on key aspects such as specific density, strength, elongation, and flex life as well as permeation resistance.

How Auto Molding Works

In the auto molding process, the raw materials are in the form of molding compounds. These molding compounds may be preforms (which is already shaped somewhat like the final part), granules, or putty-like masses. 

The basic design for the mold is usually generated from a 3D CAD file, and the tool and die maker will then base the mold design on that file. However, the mold designer must account for shrinkage, molding compound flow, size and positioning of channels to carry away excess material, and achieving uniform curing temperatures for the part. It is also important to ensure that the part can be removed from the mold, and there may be a need for ejector pins to achieve this. Needless to say, the mold is the most expensive aspect of auto molding.

Once the mold design is complete, it is manufactured out of steel using a CAD/CAM (Computer-Aided Design / Computer Aided Manufacturing) system and a CNC (Computer Numeric Control) milling machine. Additional features and surface finishes may require post-processing of the mold.

Once the mold is ready to go, the amount of compound needed for the part is carefully measured out and placed in the pre-heated open mold cavity. Once in place, the other side of the mold closes over the mold cavity and pressure is applied (most often by a hydraulic ram) in one direction to force the raw materials to fill up all cavities within the mold. Any excess material is carried away from the mold via overflow grooves.

Heat and pressure are both maintained until the polymer has completely cured. Once the part has cured and cooled, it is removed from the mold, and this part of the process may require the use of part ejection pins to completely free the newly cured part from the mold. After the part is removed, any flash can be easily trimmed away and precision machining can be used to ensure the part meets necessary tolerances.

Auto Molding PTFE

There are certain key aspects to auto molding PTFE compounds, including …

  • Pressure (usually between 3,000 and 4,500 psi)
  • Sintering temperature (in the range of 685°F – 720°F)
  • Dwell time (how long the part is held at the sintering temperature)

Pressure and dwell time are dependent on the volume and geometry of the part, as well as the machine being used.

Benefits of Auto Molding 

Auto molding PTFE has numerous benefits:

  • Range of geometries and shapes are possible
  • Can produce larger parts than possible with extrusion
  • Minimal waste material
  • Very cost-effective when compared to injection molding
  • Good surface finish
  • Close tolerances
  • Avoids defects associated with machining a polymer (e.g., internal stresses, warping)

In addition, auto molding can be used with both virgin and filled PTFE. Fillers can include both those that enhance structural and material properties (e.g., carbon fiber, molybdenum disulfide MoS2) and colors. Depending on the size and geometry of the part, it may be possible to compression mold multiple parts simultaneously. In such cases, a multi-cavity die would be used.

Disadvantages of Auto Molding

However, there are pros and cons to every PTFE manufacturing process. In the case of auto molded PTFE, the production speed is slower compared to injection molding (due to longer cycle times). Flash will always form and needs to be removed before the part can be considered finished, and this can also add a bit to the production time. While compression molding can be used to manufacture complex parts, there can be issues, such as underfilling in certain areas and the inability to achieve undercuts.

Auto Molding Costs

The most expensive aspect of auto molding, aside from the machinery needed, is the compression molds. Mold cost depends in part on the size of the component, but is more heavily influenced by the complexity of the die. The more complex the geometry of a part, the more expensive the die will be. However, the cost of a compression molding die is significantly less than that of an injection molding die. This is mostly due to the fact that compression molds do not require a complicated system of gates and runners that are necessary in injection molds.

Conclusion

Auto molding works well for manufacturing PTFE components that are not overly complex, have no undercuts, and involve a medium to large production run. In addition, the auto molding process is generally far more cost effective than injection molding. However, for PTFE parts to be high quality and durable, you need a company that is familiar with the process.

At Advanced EMC, we have the knowledge and experience to assist you with auto molding PTFE parts for your applications. Contact us today if you have any questions or are interested in obtaining a quote.