by Denise Sullivan Denise Sullivan No Comments

The Effect Surface Finish Has on PTFE Seals

Surface finish plays an essential role in the effectiveness of PTFE seals. The different finishes provide different degrees of contact between the two components, which affects the seal’s strength and reliability. In this paper, we will discuss the effect of surface finish on PTFE seal performance and suggest ways to improve seal quality.

Surface finish on PTFE

The Influences of Surface Finish on Friction

The surface finish is critical for polymer-based seals. Despite being considered a soft plastic, PTFE is significantly harder than traditional o-ring materials. Because of this, if the mating surface is designed for other materials, it can cause the PTFE seals to leak.

As you can see in the graph below, the improvement in the surface finish has a favorable effect on the frictional force required.

The following specifications were used in the force test that resulted in the above data.

  • Stroke Speed: 4 in/min (102 mm/min)
  • Shaft Diameter: 0.1875in. (4.762mm)
  • Ambient Temperature: 73°F (23°C)
  • Mating Surface Material: 17 -4 PH S.S.
  • Mating Surface Hardness: -40 Rc

Surface Finish Influences on Wear

The finish of the mating surface is one of the main factors in the PTFE seal wear. Wear on the seal is generally proportional to frictional force. In other words, less friction reduces the wear on the seal. 

The following graph shows how a smoother surface finish reduces the PTFE seal wear rate.

To calculate the wear rate in microinches RMS, we used the formula IN3 -MIN/LB-FT-HR -10-9. For microinches Ra, we used the formula CM3 -MIN/KG-M-HR -10-9.

We used the following test parameters during our testing to ensure accuracy for each test.

  • Surface Speed: 55 fpm (17 m/min)
  • Loading Stress: 55 lb./in2 (4 bar)
  • Wear Rate in Air: @ PV 3025 lb./in2 x ft/min (7.5 N/mm x m/min)
  • Mating Surface Hardness: Rc 42
  • Matin Surface Maerial 17 -4 PH Stainless steal
  • Mating Surface Finish: 1.6 to 111.1 microinches RMS (1.4 to 100 microinches RA)
  • Ambient Temperature: 70°F (21°C)
  • Ambient Relative Humidity 75% RH
  • Duration 5 Hours
  • Seal material FP

Influences on Sealing Ability

Finally, we looked at how the surface finish affected PTFE’s sealing ability. In general, the sealing ability of PTFE is proportional to the fluid’s viscosity. If a media, like gas, has a reduced viscosity, it is more difficult to seal. In these situations, having a smoother finish on the mating surface can help ensure fewer leaks.

We’ve found that different mediums require not only different finish ranges between them but also different finish ranges when considering if the surface is dynamic or static. You can see our suggested finish in the table below.

MediaDynamic Surface Static Surface 
Gases and Liquids at Cryogenic Temperatures2 to 4 microinches RMS
(1.8 to 3.6 Microinches Ra)
4 to 8 Microinches RMS
(3.6 to 7.2 Microinches Ra)
Gas at Non-Cryogenic Temperatures6 to 12 Microinches RMS
(5.4 to 10.8 Microinches Ra)
12 to 32 Microinches RMS
(10.8 to 28.8 Microinches Ra)
Liquids8 to 16 Microinches RMS
(7.2 to 14.4 Microinches Ra)
16 to 32 Microinches RMS
(14.4 to 28.8 Microinches Ra)

As you can see, the mating surface finishes can profoundly affect PTFE seals. Because of this, if the mating surface is designed for other materials, it can cause the PTFE seals to leak. Finally, we examined how this affected PTFE’s sealing ability. In general, the sealing ability of PTFE is proportional to the fluid’s viscosity. 

by Denise Sullivan Denise Sullivan No Comments

HPLC Spring Energized Seals

HPLC spring energized seals

High-performance liquid chromatography is the ideal method for analyzing various solutions in different fields. This machine, however, requires HPLC spring energized seals that adhere to strict guidelines with slight variation.

Different Liquid Chromatography Types

There are a few different types of liquid chromatography. The primary liquid chromatography types include high-performance liquid chromatography (HPLC), preparative HPLC, and ultra-high-performance liquid chromatography.

High-performance liquid chromatography is used in multiple different industries. HPLC is found in food science, drug development, and forensic analysis. It is used to separate compounds and used for quantitative and qualitative analysis.

Preparative HPLC is used in purification applications as it requires a higher flow rate. This liquid chromatography is also used to separate and collect high-purity compounds. It is also used for large quantities of compounds needed for evaluation and analysis.

Ultra-high-performance liquid chromatography (UHPLC) is similar to HPLC. It is used to separate different constituents of a compound and to identify and quantify the different components of a mixture. 

Operating Conditions

HPLC pumps operate in conditions with variable flow rates and small shaft diameters. They have tight leak criteria and operate under a wide range of pressures. HPLC pumps have a medium-speed reciprocation.

Seals in HPLC pumps must withstand the solvents used to separate compounds dissolved in the liquid sample. Solvents used in HPLC include 

  • MeOH (Methanol)
  • ACN (Acetonitrile)
  • H2O (Water).

The expected lifetime for seals in HPLC pump environments is a minimum of one million cycles. Seals may last longer depending on the flow rate, pressure, and media.

Seal Designs

HPLC seals prevent leaks from occurring. Should the mile phase lack into the back of the pump, it will impact consistency, accuracy, and pump precision. To effectively prevent leaks, seals should have effective leak resistance in pressures up to 20 kpsi.

Seal Geometry

The geometry of the seal is an important factor. For HPLC pumps, a flange design helps reduce the pump’s pulsation. HPLC spring energized seals have a longer seal ID lip and a polymer backup ring to increase the amount of contact stress.

UHPLC seals have a non-flange design and a shorter seal ID lip. Instead of a polymer backup ring, it uses a ceramic or metal backup ring. These seals have a concave back for higher-pressure distribution.

Jacket Materials

HPLC pumps’ seals have a PTFE or UHMW PE jacket. The UHMW PE material is used in systems with pressures greater than ten kpsi. UHMW PE is an FDA-compatible material for both food and pharmaceutical analysis.

PTFE jackets are the most chemical resistant of the common materials. The PTFE jackets are filled with graphite or polyimide. These fillers are heat and wear-resistant and work well in liquids and steam.

Performance Factors

Sealing performance factors are affected by the different surfaces in the HPLC pump. The housing surface has a suggested static sealing surface between 9.1 to 14.5 μin Ra.

On the plunger surface, a smoother surface is best. For virgin PTFE or UHMW PE, a minimum shaft hardness is 40Rc. The suggested dynamic surface is 7.3 – 14.5 Ra μin.

 

Medium Dynamic Surface Static Surface
Reciprocating Rotary
RMS  Ra μin  RMS Ra μin  RMS Ra μin 
Liquids 8 to 16 7.2 to 14.4 8 to 12 7.2 to 10.8 16 to 32

14.4 to 28.8

Plunger alignment needs to have a minimal shaft-to-bore misalignment with tight concentric guidance between the wash body and pump head. For best sealing performance, the shaft-to-bore misalignment should be kept to a minimum. 

Shaft To Bore Misalignment at the Seal Area
Shaft Diameter (in inches) Shaft to Bore Misalignment (in inches)
0.000 – 0.750 0.0020
0.751 – 1.500 0.0025
1.501 – 3.000 0.0030
3.001 – 6.000 0.0035
6.001 – 10.000 0.0045

 

HPLC Spring Energized Seal Recommendations

The HPLC spring energized seal requirements should be considered during the pump design process. Designers should collaborate with seal engineers early in development. Contact us today to get a quote on your next custom seal needs.