by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

PPS Polymer Applications: High-Strength Solutions for Demanding Environments

PPS (polyphenylene sulfide) is a high-performance, semicrystalline engineering polymer used where metals, standard polymers, and even some advanced polymers cannot deliver the required performance. PPS offers a unique combination of chemical resistance, mechanical strength, thermal stability, and dimensional stability, making it suitable for use in some of the harshest conditions.

The blog post will explore where PPS excels, why engineers choose it, and how specialized PPS grades such as Fluorolon® 5051, 5060, and 5065 provide tailored solutions for aggressive operating environments.

What Is PPS? A High-Performance Polymer Engineered for Harsh Conditions

PPS has an unusual chemical backbone comprising aromatic rings and sulfide linkages, which give it an inherently stable molecular structure. It also possesses a high level of crystallinity, which means good crosslinking. This crosslinking leads to excellent stiffness, low creep, and excellent dimensional stability. 

PPS also exhibits outstanding chemical resistance that makes it inert to most fuels, solvents, acids, and bases. In addition, it is resistant to permeation and naturally flame-resistant (UL94 V-0).

Key Performance Properties of PPS

Exceptional Chemical Resistance

PPS is highly resistant to almost all …

  • Organic solvents
  • Fuels
  • Automotive fluids
  • Acids
  • Caustics
  • Hydraulic media

Because of its chemical resistance, PPS is often an ideal choice for applications in chemical processing, oil & gas, and semiconductor environments.

Thermal Stability

PPS products have continuous-use temperatures of 200–220°C and remain soft until they approach the decomposition temperature. Because of their excellent thermal stability, these components can maintain their mechanical strength even under prolonged thermal exposure.

High Mechanical Strength & Wear Resistance

PPS has high stiffness and can incorporate fillers such as glass fiber, carbon fiber, PTFE, graphite, or MoS₂ to enhance its inherent mechanical strength and wear resistance. In fact, filled blends enable even lower friction, greater wear resistance, and greater stability under dynamic loads.

Dimensional Stability and Low Moisture Absorption

It exhibits extremely low water absorption (<0.05%), making it highly suitable for high-tolerance, precision components intended for use in humid or aqueous working environments.

PPS in Demanding Industries: Where It Excels

Aerospace & Defense

In the aerospace and defense industries, materials are regularly exposed to fuels, hydraulic fluids, vibration, and thermal cycling. In such environments, this material is often used for housings, gears, electrical components, brackets, and seals that require high dimensional stability.

Oil & Gas / Energy

This material is known for its ability to survive aggressive chemicals, high-pressure environments, and extreme temperatures. This combination of properties makes it an excellent choice for downhole tools, pump components, valve parts, backup rings, and wear elements.

Chemical Processing

As already discussed, PPS has excellent chemical resistance, even against caustics and hot acids. That chemical resistance is why it has proven an outstanding material choice for pumps, valves, flow meters, agitators, and sealing systems exposed to corrosive media in the chemical processing industry.

Automotive & Transportation

In the automotive industry, PPS is regularly used in everything from transmission components, coolant systems, and fuel-handling systems to EV battery components and sensor housings. In fact, its high-temperature capabilities and chemical resistance provide the reliable, long-term performance that transportation applications require.

Semiconductor Manufacturing

In semiconductor manufacturing, it has been found exceedingly useful for applications that involve ultra-low outgassing and low ionic contamination. In fact, precision parts are regularly used for wafer handling, chemical delivery systems, fittings, and fluid control components.

Electrical & Electronics

In addition to its mechanical properties, it also has excellent electrical properties, including high dielectric strength and high CTI. In this area, it is utilized for connectors, bobbins, switch components, and insulating structures.


Advanced PPS Grades and Their Application Advantages

At Advanced EMC, we have found three grades of PPS to be particularly useful.

Fluorolon® PPS 5051

This grade is PTFE-filled, optimized for low friction and wear. It is commonly used in bearings, wear rings, pump parts, and sliding/rotating components. 

Fluorolon® PPS 5060

This grade combines three fillers: carbon fiber, PTFE, and graphite. It offers even better dimensional properties along with reduced friction and enhanced thermal conductivity. It is used for components such as high-load bearings, chemical pump bushings, compressor components, and high-temperature wear applications. 

Fluorolon® PPS 5065

This grade is reinforced with abrasion-resistant additives, including carbon and lubrication. It is exceptionally well known for its excellent dry-running performance and durability under dynamic conditions. Its many applications include high-speed bushings, seal rings, valve seats, and components that must operate in especially abrasive chemical environments.

Conclusion

PPS has become one of the most versatile high-performance polymers for engineers working in harsh chemical, thermal, and mechanical environments. Its combination of chemical inertness, rigidity, thermal stability, and dimensional precision allows it to replace metals and more expensive polymers in demanding applications. Advanced EMC’s Fluorolon® PPS materials (5051, 5060, and 5065) extend these benefits even further, offering specialized solutions for wear, friction, and high-load applications. Contact us today to learn more!

by Denise Sullivan Denise Sullivan No Comments

Exploring the Properties and Applications of Polyvinylidene Fluoride (PVDF) Material: A Comprehensive Overview

PVDF is a high-performance fluoropolymer with excellent chemical resistance, thermal stability, electrical insulation properties, and mechanical strength. Pennwalt Corporation first developed it in the 1960s under the trade name “Kynar.” Since then, PVDF has found its way into countless applications across multiple industries.

Polyvinylidene Fluoride

The Remarkable Properties of PVDF

PVDF possesses several remarkable properties that make it highly desirable for various industrial applications. Let’s take a closer look at some of these key attributes:

1. Chemical Resistance

One of the most notable features of PVDF is its exceptional chemical resistance. It can withstand exposure to various corrosive substances, including acids, bases, solvents, and even oxidizing solid agents, without degrading or losing its integrity. This property makes PVDF ideal for manufacturing components in aggressive chemical environments.

2. Thermal Stability

PVDF exhibits excellent thermal stability with a high melting point exceeding 170°C (338°F). This allows it to maintain its structural integrity at elevated temperatures without undergoing any significant changes in physical or mechanical properties. As a result, PVDF can be used in applications where exposure to high temperatures is expected.

3. Electrical Insulation Properties

Another essential characteristic of PVDF is its superior electrical insulation properties. It possesses excellent dielectric strength and low dielectric constant, making it suitable for applications requiring insulation against high voltages and electrical conductivity. PVDF is widely used to manufacture cables, wires, and electronic components.

4. Mechanical Strength

PVDF exhibits impressive mechanical strength and durability, providing excellent resistance to impact, wear, and tear. Its high tensile strength allows it to withstand heavy loads and mechanical stress without deforming or breaking. This makes PVDF an ideal material for structural components in various industries.

5. Weatherability

PVDF is highly resistant to UV radiation and weathering effects, making it an excellent choice for outdoor applications that require long-term durability. It does not degrade or become brittle when exposed to sunlight or harsh environmental conditions, ensuring longevity even in challenging outdoor environments.

Applications of PVDF

The exceptional properties of PVDF have led to its extensive use across a wide range of industries. Let’s explore some of the critical applications where PVDF has proven to be highly valuable:

1. Chemical Processing Industry

PVDF’s outstanding chemical resistance makes it an ideal material for manufacturing pipes, fittings, valves, tanks, and other equipment used in the chemical processing industry. It can handle aggressive chemicals while maintaining its integrity over extended periods.

2. Electrical Industry

Due to its excellent electrical insulation properties and resistance to high temperatures, PVDF is widely used in the electrical industry for cable insulation, wire coatings, connectors, circuit board encapsulation materials, and other electronic components where electrical conductivity needs to be controlled effectively.

3. Water Treatment Systems

PVDF’s chemical resistance and ability to withstand harsh environmental conditions make it desirable for water treatment systems, including pipes, filters, membranes, and other components. PVFD membranes are also extensively used in reverse osmosis desalination plants due to their ability to retain ions during the filtration process

4. Architectural Coatings

PVFD coatings are the preferred choice for architectural applications due to their exceptional weatherability and resistance to UV radiation. They are used in facades, cladding, roofing, and other external surfaces of buildings as they provide long-lasting protection against corrosion, fading, and degradation.

5. Medical Industry

PVDF is widely used in the medical industry to manufacture components such as catheters, surgical instruments, implants, dialysis membranes, and drug delivery systems. PVDF’s biocompatibility and resistance to sterilization methods make it an ideal material for medical devices.

Polyvinylidene Fluoride (PVDF) material offers a unique combination of properties, making it highly versatile and valuable across various industries. Its exceptional chemical resistance, thermal stability, electrical insulation properties, and mechanical strength have made it a preferred choice for numerous applications ranging from the chemical processing industry to architectural coatings. The future looks promising, with further advancements expected in developing and applying PVDF material.