by Jackie Johnson Jackie Johnson No Comments

Energizers used in Spring Energized Seals

PTFE spring-energized seals are one of the most popular choices for engineers in a variety of industries including oil and gas, medical, food and more. The reasons for their popularity are many, including their long service life, even wear, and their ability to perform in some of the harshest environments.  They work well in extreme temperatures; can even perform well in situations where operating conditions can vary significantly.  They usually offer a low compression set, have a long shelf life, and work very well in non-lubricated applications. One of the main reasons for these is the use of energizers, of which there are several different kinds.

As one of the key components of spring energized PTFE seals (it’s even in the name!), each of these energizers offers a different set of characteristics that allow engineers to find just the type of seal to suit their application’s needs.

In this week’s blog post, we are going to look at five different types of energizers, and where they are best used: coil springs, V springs, helical flat springs, cantilevered finger springs, and elastomeric O-rings.

Coil Spring

When people picture the spring energizing seal, the first image that comes to mind may well be the wire coil spring, also known as a spiral pitch spring.  One of its outstanding characteristics is low friction.  The angled coil spring works well where low friction and high pressure are involved, and works best in medium speed applications

V Springs

The V Spring is a cantilever, general-purpose energizing spring, which offers good performance at a relatively low cost.  The V ribbon spring (V ribbon spring energized seal) is the one to look at for the harshest, most severe applications your industry has to face.  It has been accepted as an excellent candidate for cryogenic and vacuum applications.

The v shape of this spring provides a moderate load over a wide deflection range and is used in dynamic and static applications.

Helical Spring

The helical flat spring, also known as a compression spring, is another commonly used alternative. It is typically a cylindrical shaped spring, and uses it’s coiled, mechanical form to store and release energy, which then absorbs impacts or shocks to resist compression or pulling objects.

This energizer is well adapted to a wide range of pressures, from high all the way down to vacuum conditions. It has been found especially suitable for sealing in lightweight gases or liquids. It performs the best under medium speed conditions.

Finger Spring

One outstanding performer is the cantilevered finger spring, also known as a finger spring (probably because it the shape of it reminds you of the end of your finger).

Finger spring energized seals are suited for sealing viscous media as the load is applied to the edge of the sealing lips. Seals energized by this spring also have extremely low friction, and offer low to high pressure sealing. They are best adapted to applications with speeds ranging from low to medium.

Elastomeric O-Ring

While elastomer is often synonymous with rubber, it is actually a highly modifiable polymer. Because of its affordability, ease of installation, and small space requirements, the Elastomeric O-ring is known as one of the most widely adapted sealing solutions. Known for their durability and versatility, elastomeric O-rings are suitable for dynamic or static applications with a wide range of temperature requirements.

An elastomeric O-ring energizer is especially useful when the use of metal must be avoided. It’s adapted well to extreme pressures, much like the helical flat spring.  It also works well when dead volume needs to be minimized.

In Conclusion

PTFE spring energized seals offer extreme temperature, high pressure, chemically inert static and dynamic sealing for the most demanding applications. They achieve this by using a variety of energizers, each with their own benefits depending on the application.

Whether your application is dynamic or static, low pressure or high, there is a spring energized seal for you. And Advanced EMC Technologies can help you find it!

Want to learn more about spring energized seals? Visit our product page HERE! Need sealing solutions? Contact us today.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

PCTFE Ball Valve Seats for Low Permeation Applications

Ball valve seats that show signs of swelling, blistering, or “popcorning” have been permeated at a molecular level. Needless to say, this can cause some serious issues such as leaks and catastrophic failure. The solution is to find a ball valve seat material that is highly resistant to permeation and an excellent choice would be PCTFE. In this week’s blog post, we will talk about PCTFE Ball Valve Seats and how they are used in Low Permeation Applications.

Introduction

Certain types of media may permeate the ball valve seat, leading to swelling, blistering, and leakage. Applications such as chemical processing and petrochemical transport may require a seat material that is resistant to permeation but still exhibits key properties such as low friction, compressive strength, and resistance to deformation is still needed.

How Permeation Works

Permeation refers to the molecular level penetration of gases, vapors, and liquids through a solid material via diffusion. In diffusion, molecules pass from an area of high concentration to an area of low concentration. This can be extremely problematic when a ball valve is being used because of the potential distortion and leaking of the ball valve seat.

Keep in mind that permeation can take place through a surprising variety of materials, including metals and polymers. In addition, some materials are only semipermeable, which means that only ions or molecules with certain properties can pass through the material. 

The rate of permeation is directly related to crystal structure and porosity, which is why factors such as density and molecular structure are important when selecting materials for applications where low permeation is important. 

Why Permeation is a Problem for Ball Valve Seats

Gas permeation can not only compromise gas stream purity but also result in dimensional changes of the ball valve seat. One form of these dimensional changes is swelling, which can occur if the permeating media becomes a part of the molecular structure of the material. In reinforced polymers, such as glass-reinforced PTFE, swelling can cause separation between the glass fibers and the PTFE matrix. 

Another common manifestation of permeation is referred to as “popcorning” or “popcorn polymerization” which occurs due to a polymeric chemical reaction. And among the most notorious source of problems with popcorning and swelling are monomers with extremely small molecular sizes such as Butadiene and Styrene.

Both popcorning and swelling will lead to leakage, and over time popcorning will completely destroy the ball valve seat. This makes the choice of ball valve seat materials extremely important for applications where this is a problem.

PCTFE for Low Permeability Ball Valve Seat Applications

One of the best materials for a ball valve seat application where permeability is a problem would be PCTFE (Polychlorotrifluoroethylene), a thermoplastic chlorofluoropolymer. PCTFE is sometimes referred to as Modified PTFE or PCTFE, as well as by trade names Kel-F, Voltalef, and Neoflon. PCTFE is often thought of as a second-generation PTFE material that maintains the chemical and thermal resistance of PTFE along with its low friction. It is also similar to other fluoropolymers such as PFA or FEP.

One of the defining characteristics of PCTFE is that it has a much more dense molecular structure and a low void and micro-porosity content when compared to similar ball valve seat materials. This gives it a very low permeability coefficient, which means that the likelihood of it swelling or popcorning is far lower than other materials. For example, its permeability for O2, N2, CO2, and H2 are 1.5 x 10-10, 0.18 x 10-10, 2.9 x 10-10, and 56.4 x 10-10 darcy, respectively.

PCTFE also provides improved toughness and strength along with good deformation recovery and excellent creep and cold-flow resistance. In addition, it has a wide operating temperature range of -100°F to 500°F. In fact, it performs extremely well at cryogenic temperatures. Because of its low friction, it also results in a very low ball valve operating torque. PCTFE also exhibits zero moisture absorption and is non-wetting. 

PCTFE works well in operating environments where other polymers may fail. For example, it is well adapted to nuclear service that may involve high radiation exposure, is non-flammable (D 635), and is resistant to attack by the vast majority of chemicals and oxidizing agents. The only chemicals that might lead to slight swelling are ethers, esters, aromatic solvents, and halocarbon compounds.

In addition to its use in applications requiring low permeability, PCTFE is also considered an excellent choice for applications that need a low-outgassing material and is commonly used in semiconductor applications. Also note that there are PCTFE grades that are FDA approved, such as Fluorolon PCTFE 2800. 

Conclusion

Fuel processing and transport, chemical processing, petrochemical systems, and emissions control are just a few of the applications where low permeation materials may be necessary. For such applications, PCTFE is an excellent option for ball valve seat materials because it combines the basic properties necessary for a seat with an extremely low rate of permeation.

If you need a solution to blistering, swelling, or popcorning of a ball valve seat, contact the experts at Advanced EMC. Our sealing team will work with you to find the right ball valve seat material for your application.