by admin admin No Comments

Seals for Space Vehicle Propulsion Systems

In addition to the growing market for commercial applications, Statista estimates that 80 countries will have their own space program by 2025. And a critical factor in the success of any space venture is the type of seals used, including those for space vehicle propulsion systems.

However, finding the optimum sealing solution that provides highly dependable performance can be formidable for several reasons, including extreme pressures and temperatures, chemical compatibility, SWaP, and outgassing, not to mention vendor requirements involving seal size manufacturing.

Extreme Pressures

Depending on the applications, the pressures faced by seals can involve not only high pressures in the range of 100 bar but ultra-high vacuum conditions as well. For example, consider a typical hypergolic rocket propulsion system where pressures can reach between 1,500 and 16,000 psi during Stage 2. To further complicate matters, pressure fluctuations make it much more challenging to retain a reliable seal. 

Extreme Temperatures

One of the challenges involved in designing seals for propulsion systems often involves wide temperature ranges from cryogenic to extreme heat. For example, the fuel tanks on many modern rockets must provide sealing at cryogenic level temperatures at which many polymeric and elastomeric materials become brittle and unreliable. And when temperatures fluctuate, traditional seal solutions can experience significant dimensional changes, leading to leaks.

Material Compatibility

Seals for vehicle propulsion systems must be compatible with the fuels involved. For example, cryogenic hyperbolic bipropellants often require seals resistant to oxidizers. Also, keep in mind that, according to a NASA Lesson Learned on Static Cryogenic Seals for Launch Vehicle Applications, seal materials must also be compatible with any anticipated purge or cleaning material that they may come into contact with.

SWaP

SWaP (Size, Weight, and Power) is a significant factor in both space vehicle engineering and aerospace in general. Designs must fall within tight constraints for weight to minimize fuel requirements and size to reduce the overall volume of the space vehicle. In addition, seals, including those for the propulsion systems, must also be optimized to meet SWaP requirements.

Outgassing

Vacuum conditions make outgassing, the release of gasses from solid materials, a serious problem. This phenomenon not only introduces new chemicals to what may already be a volatile environment but can also lead to the deposition of chemicals on critical surfaces. Therefore, NASA makes available spacecraft material outgassing data to aid in selecting safe materials.

Size

Large fuel tanks necessitate large seals. For example, some of the seals for NASA’s SLS (Space Launch System) are over 6’ in diameter, and other fuel tanks have similar requirements. Such seals are challenging to both manufacture and test. Such large seals must usually be custom manufactured with small production runs, making it difficult to balance cost and performance. In addition, not all seal vendors have the manufacturing capabilities required for creating seals of this size at the proper levels of accuracy and precision.

Spring-Energized Seals

Image from NASA

Spring-energized seals, widely used in aerospace, are a practical solution for space vehicle propulsion systems. They can retain seal integrity even when subject to extreme pressure and temperatures due to the energizer. In addition, these seals can account for misalignment, eccentricity, thermal expansion and contraction, wear issues, and other dimensional changes. And they provide a consistent force over a wide deformation range.

The most commonly used materials for spring-energized seals in space environments include PTFE, FFKM, and Hytrel. However, when outgassing is a concern, materials such as PEEK, PAI, PI, Acetal, PCTFE, and antistatic PTFE can be considered. And many of these materials are also available with fillers to enhance their properties.

There are also a variety of choices regarding the spring energizer used. For example, cryogenic and vacuum pressure environments most often implement V ribbon springs (also known as V-springs),  helical springs work exceptionally well for static cryogenic applications, and high-pressure conditions usually employ coil seals. And remember that canted coil springs can be highly customized to produce consistent forces.

Advanced EMC: Your Source for Space Vehicle Seals

When it comes to vendor concerns, Advanced EMC has the equipment and experience required to manufacture large seals accurately. Our sealing solutions team has the knowledge and understanding needed to help you at every step of selecting propulsion system seals for everything from small LEO satellites to passenger-laden space vehicles. Contact us today!

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

O-Rings in Spaceflight

Since the Challenger disaster, o-rings have come under close scrutiny in spaceflight designs and applications and they continue to play a vital role in modern spaceflight, including modern commercial spaceflight ventures such as SpaceX, Virgin Galactic, and Blue Origin.

In this week’s blog post, we will discuss o-rings in spaceflight, including problems that arise, the best materials, and more.

O-Ring Failures in Modern Spaceflight

Few would argue the importance of seals and o-rings in space shuttles and rockets. From rocket engines to the International Space Station, the ability to retain media and prevent its contamination is of vital importance. This importance was first brought to public attention through the Challenger disaster where a stiff o-ring cost multiple lives. However, o-ring issues did not end there.

In 2005, orbiter tests prior to the space shuttle Discovery’s return to flight revealed a failure that traced back to Nitrile/Buna N o-rings. Six of nine flow control valve o-rings had suffered radial cracks, with one o-ring developing problematic leak paths as a result. The cause of the o-ring issue was found to be ozone attack of Nitrile/Buna N, which is one of its susceptibilities.

Back in 2016 a Blue Origin launch was delayed by o-ring issues. Jeff Bezos reported that the rubber o-rings in the New Shephard rocket’s nitrogen gas pressurization system were leaking and had to be replaced before the launch could continue. New Shephard is the same rocket used to take Star Trek legend William Shatner on his first real space flight.

Virgin Galactic, owned by Richard Branson, discovered a very dangerous issue with the flight vehicle SpaceShipTwo when it was returned to the hangar in 2019. A critical seal running along a stabilizer on one of the wings had “come undone.” While not an o-ring, this does reinforce the importance of seals on modern spacecraft.

Operating Environment Complications for O-Rings in Spaceflight

O-rings face a very hostile environment in space, including …

  • Extreme temperatures, ranging from cryogenic to high
  • Wide temperature variation
  • Extremely high pressures and vacuum pressures
  • Vibration during launch
  • Risk of permeation depending on the media involved
  • Chemical attack from media such as fuels and lubricants
  • Potential exposure to ozone, ultraviolet, and radiation

There are other potential issues as well. For rockets in particular, one of the challenges faced when specifying o-rings involves their ability to expand fast enough to maintain a seal even when joints (a common area of use for o-rings) move away from each other. Swelling when exposed to hydrocarbon-based greases used to protect components against corrosion can be problematic as well. 

O-Ring Materials in Spaceflight

O-rings are manufactured from a diverse group of materials, including EPDM, FEPM, FFKM, FKM, Fluorosilicone, HNBR, Hytrel, NBR, Neoprene, Polyurethane, and Silicone.

Any material used in spaceflight applications, however, would need to fall within the categories of high temperature service and/or chemical service, reducing the list to materials such as …

  • FEPM (trade name Aflas)
  • FFKM (trade names Kalrez, Chemraz, Markez, and Simriz)
  • FKM (trade names Viton, Technoflon, and Fluorel)
  • Silicone. 

Keep in mind, however, that other materials may be suitable that are not included in this list and the suitability of these materials is highly dependent on the application.

FEPM O-Rings

FEPM, perhaps better known by the trade name Aflas, is a copolymer of tetrafluoroethylene and propylene and often represented as TFE/P. In addition to chemical compatibility and a degree of high temperature performance, it offers excellent ozone resistance. It is known for providing excellent performance where traditional fluoroelastomers are known to fail.

FFKM O-Rings

FFKM, often referred to by trade names such as Kalrez or Chemraz, is an excellent option for applications that involve extreme pressures, extreme temperatures, and aggressive chemicals. FFKM, which is a perfluoro elastomer material, is available in various grades that offer key properties such as low permeation, low compression set, resistance to temperature cycling, and wide ranging chemical compatibility as well as resistance to explosive decompression and plasma resistance. 

FKM O-Rings

Fluoroelastomers such as FKM, known to most people as Viton, can provide excellent resistance to fuels, lubricants, and oils. Another key characteristic of is extremely permeability when exposed to a range of substances that include oxygenated aircraft fuels. They also offer reliable performance at extremely high temperatures where non-fluorinated elastomeric materials will start to degrade.

In addition, FKM comes in various grades focusing on features such as low temperature resistance, fuel resistance without sacrificing necessary elasticity, and chemical resistance that is unaffected by extremely high temperatures. Such features combined have already made them a common choice in aerospace applications, including o-rings.

Silicone O-Rings

Silicone rubber o-rings have been used extensively by NASA and remain a popular choice for o-rings used in spaceflight applications. In fact, here’s a direct quote from NASA that dates back to 2010:

“Silicone rubber is the only class of space flight-qualified elastomeric seal material that functions across the expected temperature range.”

It is considered by many to be the best in-class elastomer choice for extremely harsh environments involving high temperatures and among its key properties is its ability to maintain critical mechanical properties in the presence of extreme heat. A potential issue related to the use of silicone for o-rings lies in its gas permeability.

Conclusion

O-rings are just as important to modern spaceflight as ever, and so is the importance of choosing the right type of o-ring. A failed o-ring, no matter how tiny it may seem, can lead to serious disaster and potential loss of life. 

If you are looking for a reliable o-ring solution for an aerospace or spaceflight application, contact the sealing group here at Advanced EMC. Our team will work with you to explore all possible solutions, including materials beyond those discussed here. Give us a call today and let our team put their expertise to work for you.

by admin admin No Comments

Sealing Solutions for Aerospace Industry – An Overview

The aerospace industry needs robust sealing solutions, ever reliable and highly engineered. They need Advanced_EMC_Aerospace_polymer_plastictechnologically advanced sealing devices that can withstand aggressive chemicals, variegated pressures and high temperatures. Top standard sealing products combine experience, engineering and innovation. These are cost effectively, yet efficiently built, to fit virtually any aerospace application. Read more