by Denise Sullivan Denise Sullivan No Comments

The Evolution of PTFE: Unraveling the History and Advancements in PTFE Fiber and Polymer

PTFE, or Polytetrafluoroethylene, is a remarkable material known for its exceptional properties and wide range of applications. PTFE has become integral to our modern lives, from non-stick cookware to electrical insulation. This article will explore the history and advancements in PTFE fiber and polymer, exploring how this versatile material has evolved.

ptfe fiber

The Origins of PTFE

The story of PTFE began in 1938 when a chemist named Dr. Roy Plunkett accidentally discovered the substance while working on refrigerants at DuPont’s Jackson Laboratory in New Jersey. During an experiment involving tetrafluoroethylene gas (TFE), Plunkett noticed that the gas had solidified within his container. Upon further investigation, he realized he had stumbled upon a new polymer with unique properties.

This accidental discovery marked the birth of Polytetrafluoroethylene or PTFE. This substance would revolutionize various industries due to its exceptional characteristics.

Properties and Applications

1. Non-Stick Coating

One of the most well-known properties of PTFE is its non-stick nature. This property arises from its low surface energy, which allows substances to slide off its surface easily without sticking. It paved the way for non-stick cookware such as Teflon pans and baking sheets.

2. Chemical Resistance

PTFE exhibits remarkable chemical resistance against acids, bases, solvents, and other corrosive substances. This property is ideal for chemical processing equipment such as piping systems, gaskets, seals, and valves.

3. Electrical Insulation

Due to its excellent dielectric properties and high melting point stability, PTFE is widely used as electrical insulation in various industries. It can withstand high voltages and is commonly found in cables, connectors, and insulating tapes.

4. Low Friction

PTFE possesses an extremely low coefficient of friction, making it highly suitable for applications where reduced friction is desired. It is utilized in bearings, gears, and sliding components to minimize wear and improve efficiency.

5. Heat Resistance

PTFE exhibits exceptional heat resistance with a melting point of around 327 degrees Celsius (621 degrees Fahrenheit). This property can withstand high temperatures without significantly changing its physical or chemical structure.

Advancements in PTFE Fiber

Over the years, researchers have significantly advanced in developing PTFE fibers with enhanced properties and performance characteristics.

1. Expanded Polytetrafluoroethylene (ePTFE)

Expanded Polytetrafluoroethylene (ePTFE) is a unique form of PTFE stretched to create a porous structure with millions of tiny interconnected pores. This material retains PTFE’s inherent properties while offering improved breathability and water resistance.

ePTFE finds applications in various fields, such as medical textiles (for surgical implants), outdoor clothing (as waterproof membranes), air filtration systems, and even as membranes for fuel cell technology.

2. High-Strength Fibers

Advancements have also been made to enhance PTFE fibers’ strength and tensile properties by introducing reinforcements or blending them with other materials such as carbon fiber or glass fiber. These high-strength fibers find applications requiring increased mechanical strength, such as aerospace components or industrial belting systems.

Advancements in PTFE Polymer

In addition to fiber advancements, researchers continue to make strides in improving the overall performance characteristics of solid-state PTFEs through polymer modifications and processing techniques.

1. PTFE Composites

PTFE can be blended with various fillers and additives to create composite materials with tailored properties. For example, adding glass fibers or carbon nanotubes can significantly enhance PTFE composites’ mechanical strength and electrical conductivity.

These composites find applications in industries such as automotive (for components like seals, gaskets, and bearings), electronics (for connectors and insulating materials), and even medical devices.

2. Micro-Powdered PTFE

Micro-powdered PTFE is a finely ground PTFE with unique properties due to its small particle size. It is often used as a lubricant or as an additive to improve the performance of other materials such as coatings, greases, or plastics.

The microscopic particles of powdered PTFE act as solid lubricants, reducing friction and wear between surfaces. This property makes it suitable for applications where self-lubrication is desired or traditional liquid lubricants cannot be used.

From its accidental discovery to the advancements in fiber and polymer technology, the evolution of PTFE has been remarkable. This versatile material continues to find new applications across various industries due to its unique combination of properties such as non-stick nature, chemical resistance, electrical insulation capabilities, low friction, and heat resistance.

As researchers delve deeper into understanding the intricacies of this fascinating material, we can expect further breakthroughs that will push the boundaries of what is possible with PTFE. Whether it’s improving existing applications or developing entirely new ones, the future holds immense potential for this extraordinary material.

FAQs

Q: Is PTFE safe for use in cookware?
A: PTFE-coated cookware is safe when used according to manufacturer instructions. However, at very high temperatures (above 260 degrees Celsius or 500 degrees Fahrenheit), the coating may begin to degrade and release potentially harmful fumes.

Q: Can PTFE be recycled?
A: While recycling options for some PTFEs are limited due to their inherent stability, certain manufacturers have developed processes to recycle waste scraps from production lines into usable products.

Q: What are the limitations of using ePTFE membranes?
A: ePTFE membranes offer excellent waterproof breathability; however, they can lose water resistance over time if exposed to harsh chemicals or extreme conditions. Additionally, their performance may vary depending on the specific application and environmental factors.

Q: Can PTFE be used in high-temperature applications?
A: Yes, PTFE is known for its exceptional heat resistance. It can withstand temperatures up to 327 degrees Celsius (621 degrees Fahrenheit) without significant degradation or loss of properties.

Q: Are there any health risks associated with PTFE exposure?
A: When used as intended, PTFE poses no significant health risks. However, when heated to temperatures above 260 degrees Celsius (500 degrees Fahrenheit), PTFE coatings may release fumes that can cause temporary flu-like symptoms in humans and potentially harm pet birds.

by Denise Sullivan Denise Sullivan No Comments

Exploring the Benefits of Fluorolon PTFE in Industrial and Engineering Applications


Fluorolon PTFE (Polytetrafluoroethylene) is a unique synthetic polymer with many benefits for industrial and engineering applications. This versatile material can be used for a wide range of purposes, from chemical processing to cookware. In this article, we will explore some of the key benefits and uses of Fluorolon PTFE.

FEP encapsulated helical spring seals are approved for cryogenic and FDA use. Fluorolon PTFE

Chemical Resistance


One major benefit of using Fluorolon PTFE is its excellent chemical resistance properties. This material is highly resistant to acids, bases, solvents, and other corrosive substances. This makes it an ideal choice for use in applications such as chemical processing plants or food processing industries where harsh chemicals are often used. It can also be used as a protective coating on metal surfaces to protect them from corrosion or damage from exposure to corrosive materials.

High-Temperature Resistance


Another benefit associated with Fluorolon PTFE is its high-temperature resistance properties. This material can withstand temperatures up to 260°C (500°F) without losing its strength or shape – making it an excellent choice for use in insulation, gaskets, seals, and other high-temperature applications such as aerospace parts or engine components that require superior heat resistance capabilities. The thermal stability offered by this polymer also ensures that parts maintain their original dimensions even under extreme conditions making them ideal for precise manufacturing processes where dimensional accuracy is critical.

Low Friction Properties


Fluorolon PTFE also offers exceptionally low friction properties, making it suitable for use in various mechanical components such as bearings and slides where minimal friction between moving surfaces is desired. Its low coefficient of friction helps reduce wear on machinery parts resulting in increased operational life spans while simultaneously providing smoother operation with less vibration compared with traditional materials like steel or bronze alloys. Furthermore, since no lubricants are required, energy consumption costs due to frequent maintenance procedures associated with lubrication are significantly reduced compared to traditional metals.

Non-Stick Properties


In addition, Fluorolon PTFE has impressive non-stick properties, making it ideal for use in cookware, baking sheets, conveyor belts, and other industrial equipment. Its non-stick characteristics enable food products like cakes, cookies, etc., to slide easily off surfaces resulting in efficient production processes while maintaining product quality standards at the same time. Furthermore, these non-stick characteristics help reduce clean-up times after the production process, thereby saving both time & money.

Electrical Insulation Properties

Last but not least, one important benefit this polymer provides includes its electrical insulation capabilities making it perfect for use within high-voltage industrial equipment & electronic components alike. Its ability to prevent electricity from leaking out allows companies within the electronics industry to create safer products without having to worry about hazardous shocks occurring during usage, thus ensuring customer safety at all times, leading to higher customer satisfaction & loyalty levels over time.

At Advanced EMC Technologies we use Flourolon Virging PTFE primarily for seals, seats, bearings, and insulaotrs. All our Flourolon PTFE is FDA and dairy approved. We offfer both Virgin PTFE ASTM-D4894 and filled PTFE ASTM D4745-06.

PropertySpecifiedUnitsMethod
Specified Gravity (FEP) Only2.14 –2.19gr/ccASTM D792
Maximum Recommended  Stretch2 %N/AASTM D638
ES Seals Are For Type ServiceStatic N/A
Coefficient of Friction (FEP)0.19StaticASTM D3702
Dielectric Constant (FEP)N/AN/AASTM D150
Dielectric Strength (FEP)N/AN/AASTM D257
Thermal Expansion No Spring8.3 x 10^5thin/in/°FASTM D696
Compressive StrengthN/AN/AASTM D695-57
FEP Seal Temperature Range-420 to 428°F
PFA Seal Temperature Range-420 to 500°F

To summarize, the many benefits associated with using Fluorolan PTE should not be overlooked, especially when considering various industrial & engineering-related applications that call out these specific attributes offered by this synthetic polymer beyond any other commonly available alternatives currently present in the market today. Its ability to resist chemicals and withstand higher temperatures than most polymers without losing shape/strength, alongside offering superior low friction/non-stick qualities coupled with excellent electrical insulation capabilities, clearly demonstrates why so many industries opt to choose Fluorolon PTFE over any other material available.

by Jackie Johnson Jackie Johnson No Comments

Why Geckos Can’t Cling to PTFE

It may come as a surprise to some but geckos are not, in fact sticky! Gecko’s can cling to glass and climb up walls, but geckos are not inherently adhesive. In fact, there are certain surfaces geckos can not cling to at all- mainly PTFE.

In this week’s blog post we will go over exactly how the gecko gets its Spiderman like abilities, and why exactly they can not seem to climb on PTFE.

A Sticky Situation

With certain types of geckos, their feet contain thousands of tiny, hair-like, hierarchical fibrils called setae, that end in even more, microscopic hair-like structures, so tiny they are not much larger than the wavelength of visible light.

These setae are also ultra-flexible, so when a gecko jumps to another surface, they are able to absorb an incredible amount of energy and redirect it, allowing the gecko to quickly cling from surface to surface.

There are two prevailing theories as to how this process works. One is known as van der Waals forces, or molecular attractions that operate over very small distances. The other, proposed by Yale research Hadi Izadi is that geckos use static electricity which allows them to cling to most surfaces.

Most surfaces except, it seems, Teflon.

Teflon – The Bane of Geckos?

Did you know that PTFE was engineering specifically to resist adhesion by van der Waals forces?  PTFE is composed of carbon and fluorine atoms.  Of all the elements known to date, fluorine has the highest electronegativity.  This causes PTFE to repel other atoms that come near it.  More specifically, it works against van der Waals forces.

Furthermore, the molecular structure of Teflon is such that the fluorine atoms surround the carbon atoms.  It repels any atoms that try to come near the carbon atoms, giving PTFE its outstanding chemical inertness.

Researchers at the University of Akron, in an effort to further understand, and hopefully replicate, gecko stickability, decided to see what kind of surfaces geckos can cling to, and Teflon was one of the materials tested.

The answer?

Because of its ability to resist adhesion by van der Waals forces- geckos, who potentially use van der Waal forces to cling to other materials, cannot cling to dry PTFE surfaces.

In Conclusion

So, it would seem that the very mechanisms that prevent geckos from walking up dry PTFE provide its most attractive characteristics: extremely low friction and high chemical resistivity.  So, when you are looking for a low-friction option for a bearing or seal, don’t forget the bane of gecko’s everywhere: PTFE.

by admin admin No Comments

What is PTFE (Polytetrafluoroethylene) …a flash of genius or a lucky accident for mankind?

what_is_polytetrafluoroethylene_ptfewhat_is_polytetrafluoroethylene_ptfe - Dr. Roy Plunkett

 

What is PTFE?

PTFE the acronym for polytetrafluoroethylene, created quite by accident has become one of mankind’s most revolutionary inventions.  Polytetrafluoroethylene is a synthetic chemical compound best defined as any polymer, plastic or resin having the formula (C 2 F 4) n, prepared from tetrafluoroethylene — a colorless, water soluble, flammable gas.

Noted for its slippery, nonsticking properties polytetrafluoroethylene (PTFE) is most commonly associated with cookware and products under the 1945 Kinetic Chemicals patented trademark Teflon®.  While this revolutionary chemical compound opened the door in the retail market for cookware, it has blown the doors off of industrial and technological applications.  What is so remarkable is this door of serendipity opened quite by accident at the DuPont labs in 1938.   

 

History of Polytetrafluoroethylene (PTFE)

In 1938, while working for DuPont Corporation in New Jersey, Chemist Dr. Roy Plunkett was attempting to make a new chlorofluorocarbon (DuPont brand name Freon®) refrigerant.  When he and his associates were checking a frozen, compressed sample of tetrafluoroethylene  they discovered that the sample had spontaneously polymerized into this white, waxy solid form later called polytetrafluoroethylene (PTFE).

According to the DuPont Corporation, “ PTFE is inert to virtually all chemicals and considered the

most slippery material in existence.  These properties have made it one of the most valuable and versatile technologies ever invented, contributing to significant advancements in areas such as aerospace, communications, electronics, industrial processes and architecture

Read more