by Jackie Johnson Jackie Johnson No Comments

The Oil and Gas Industry During Covid-19

During the early months of 2020, when the COVID-19 pandemic raged across the globe, the oil and gas industry face a historic collapse.

2020 was a year of astounding disruption.

With restrictions in travel, decline in economic activity, a price war between various countries, and declines in stock, the industry was shaken to its very core and, like many other industries, forced to reinvent itself in the wake of 2020.

In this week’s blog post we will discuss the state of the oil and gas industry during the COVID-19 pandemic, how it has fared, and innovations that have been made.

An Industry Wide Crisis

2020 was a volatile year for many industries, oil and gas in particular. In the early months of 2020, oil prices had declined by about 33%. After that various oil producing countries engaged in a price war, triggered by a breakdown in dialogue. COVID-19 caused a historic drop in travel, causing the demand for oil to plummet to unprecedented lows.

WTI spot prices declined to as low as $8.91 a barrel in April of 2020, a level not seen since the economic recession of 1986. The drop in oil prices has also added problems to several energy producing states and local governments in the US, such as Texas, that are dependent on oil and gas revenue.

Many companies had to reorganize their entire business model, and many others were forced to file for bankruptcies or to liquidate their assets.

Things looked fairly bleak for the industry as 2020 progressed and the pandemic continued to rage across the globe. Despite that there were several silver linings.

Oil in the Medical Market

One good thing is that despite the disruption in oil production, causing a drop of more than a million barrels per day over the year, there has been little to no shortage in actual supply of oil. This means that people have still been able to fill their car or use natural gas to heat their home. The industry has also been open during large parts of the pandemic, having been deemed essential by the government. This makes sense, as petroleum is used in everything from anesthetics to wheelchairs to the gas the powers ambulances.

Likewise, while there has been a shortage of medical supplies such as masks and ventilators, it was mainly a planning issue. These supplies and others like gowns, surgical equipment, syringes and more are made with petroleum-based products. As such the oil and gas industry was able assist to manufacture all of those products in mere weeks to meet the demands created by COVID-19.

Similarly, with the COVID-19 vaccines include syringes made from plastics derived from petroleum, and the Pfizer and Moderna vaccine require storage in industrial refrigeration made possible thanks to petroleum-based products.

Digitalization

While there is no doubt that COVID-19 has disrupted the oil and gas industry, some are stating that it may be a blessing in some ways. According to a report by the International Bar Association, the “reduction in oil and gas prices has increased the pressure on the industry to seek greater efficiency and reduce production costs.”

One promising alternative is digitalization, either through virtual modeling for project optimization, digital planning, cloud-based process design or machine learning.

With the social distancing requirements in place in many countries, this has forced companies to streamline remote work platforms.

Bob Benstead, VP of business cloud software firm Infor had this to say on the subject:

“I believe the biggest development that the oil and gas industry will see in 2021 will be the dramatic ramp-up of digital initiatives. This will truly push the industry toward new thinking, especially around how to maximize AI and machine learning, aligned to sensors and other Internet of Things devices, to drive down costs and optimize the workforce. Additionally, the increased trend toward cloud computing will help to significantly lower the total cost of service (TCS) to build, run and maintain efficient ERP (enterprise resource planning) and EAM (enterprise asset management) systems that oil and gas companies rely on.” (Rigzone.com “What Looms for Oil and Gas in 2021”)

Digitalization is expected to play a key role in the oil and gas industry as 2021 goes on. With enabling remote operations and allowing more human-machine collaboration, digitalizing is driving the industry forward.

Hope on the Horizon

The EIA (the US Energy Information Administration) predicts that the cost of crude oil will decline by the second half of 2021, making a more balanced global oil market. This will hopefully lower gas prices, which have been at record highs, as well as lowering the cost of production of petroleum-based products.

The oil and gas industry is also looking towards the future, with key players looking into clean energy transition, exploring public-private partnerships.

In early October, 323 rigs were working in domestic oil plays, which rose to 413 for the week ended Dec. 23, up about 28% year to date. This is still down substantially from the 838 rigs active in early March, but up nearly 50% from the early-July low of 279.

And finally, while the oil and gas industry as a whole has seen a downturn in profit, one sector, the gas pump market, as seen a CAGR growth of 6.85% in 2020, and is expected to reach a market size of US$8.685 billion by the year 2026.

In Conclusion

The impact of COVID-19 on the oil and gas industry has forced many to discuss the future of one of the world’s most volatile industries. Despite the hardships, however, there is no doubt that oil and gas will remain an important part in the global economy, and our every day lives, for some time to come.

For more information of polymer sealing solutions for oil and gas, contact Advanced EMC Technologies today!

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Rotary Shaft Seals in the Oil and Gas Industry

Seals in the oil and gas industry face some of the most intense challenges, HPHT (High Pressure, High Temperature) and corrosive media. Trying to find the right rotary shaft seal for such an application can be challenging but is far from impossible.

Introduction to Oil and Gas Seals

Seals are needed in many different areas of the petrochemical industry. They can be found in compressors, motors, gearboxes, pumps, top drives, and steam turbines. Seals are required for mixers, extruders, fans, cooling towers, and blowers. Swivel stacks, wellhead connectors, subsea connectors, and rotary drill bits are also in need of reliable seals to do their job safely and effectively.

And whether these seals are for upstream, midstream, or downstream petrochemical processing, they often serve in a critical application: when a seal in the oil and gas industry fails, it is more than an inconvenience. Seals failures can quickly prove devastating to personnel, the equipment, and the environment. And the costs of seal failure can easily extend beyond equipment downtime and repair costs, as there may be fines related to environmental damage as well as costly lawsuits and out-of-court settlements involved.

With all that said, it can be agreed that seals for rotary shaft applications must be especially reliable, extremely rugged, and able to provide excellent performance in some of the most hostile operating environments in existence.

Spring-Energized Seals

Spring-energized seals include a spring energizer that keeps the seal lip in contact with the sealing surface when other seals would fail. They can maintain a seal even in the presence of wear, out of roundness, eccentricity, and runout. In addition, spring-energized seals outperform traditional lip seals in extreme pressures (including vacuum pressures) and extreme temperatures (including cryogenic temperatures). 

Most oil and gas applications using spring-energized seals take advantage of canted coil springs and their ability to provide a consistent load on the seal lip over a wide deflection range. In addition, canted coil springs are also highly resistant to damage unless they are stretched upon installation.

Labyrinth Seals

Labyrinth seals do an excellent job of sealing and are very effective at contaminant exclusion. They accomplish this through a barrier with a complicated set of maze-like paths (hence the term “labyrinth”) that (1) restricting the clearance through which leaks can occur and (2) creates areas of turbulent flow and high flow friction to further prevent leaks and contamination.  They are considered a dynamic mechanical clearance seal.

One of the benefits of labyrinth seals is their ability to provide sealing without making contact with the sealing surface. This means they experience far less wear than traditional lip seals and generate less frictional losses, as well. They are highly efficient, extremely reliable, and are even easy to install.

Seal Materials

Rotary shaft seals can be exposed to highly corrosive chemicals including methanol, H2S, aromatic hydrocarbons, oil, and supercritical CO2. Many of the chemicals that seals must interact with are also highly flammable gases and liquids. Operating temperatures can range from cryogenic below zero temperatures all the way up to 800°F, depending on the application and media involved. To complicate matters further, some liquid products are handled near their vapor temperature where they can unexpectedly flash into vapor. In addition, the materials used need to be resistant to chemical permeation while also being extremely wear-resistant and flameproof.

Two options typically lie at the top of the list for seal jacket materials: PEEK and PTFE. Both of these high-performance polymer materials are extremely compatible with a wide range of chemicals. They offer excellent performance in the HPHT environment found in most oil and gas applications: PEEK has a maximum operating temperature of  500°F and PTFE can handle temperatures up to 575°F. They also perform well in below-zero cryogenic temperatures, such as those used with LNG.

These engineering polymers are also wear-resistant and flame resistant with low coefficients of friction and thermal expansion. In addition, they are dry-running so no additional lubricants are required.  And PEEK in particular offers excellent performance even in sour gas environments, which often destroys other seal materials.

For spring-energized seals, both PEEK and PTFE are excellent choices. For labyrinth seals, however, PEEK or Flourosint (enhanced PTFE) usually performs more effectively. And keep in mind that these materials can be enhanced with fillers to increase their mechanical properties, including stiffness, strength, and wear resistance.

Conclusion

When traditional rotary shaft lip seals fail in oil and gas operations, consideration should be given to spring-energized seals and labyrinth seals combined with PTFE, PEEK, or enhanced PTFE. This combination of sealing technology and engineering polymers can provide the reliable performance needed in critical applications where seal failure is simply not an acceptable option. Both types of seals and the materials described here have proven performance records for their ability to handle the rugged, corrosive, HPHT environments of the petrochemical industry.