by Jackie Johnson Jackie Johnson No Comments

History of 3D Printing

3D Printing, or additive manufacturing, is older than most people think. In fact, it has been around since the 1980s! Today we will go over this technology’s exciting history, from its earliest prototypes to today’s use. In this blog post, we will go over the history of 3D printing, from it’s earliest prototype to today!

While the concept of 3D printing has been around since the 70s, the first experiments began in 1981, when Dr. Kodama began research into a rapid prototyping technique. He was the first person to describe the layer-by-layer development that 3D Printing is famous for. Dr. Kodama used SLA (Stereolithography), which is a photosensitive resin that he then polymerized with a UV light. While it is clear that Dr. Kodama was the first to describe, he, unfortunately, did not file the patent in time.

In 1986, an engineer by the name of Charles Hull submitted the first patent for SLA. Two years later he founded the 3D Systems Corporation and released the SLA-1, the first, official, 3D printer.

1988 was a big year for 3D printing technology! That year, along with the founding of 3D Systems Corp, the University of Texas was also dabbling in the fledgling technology. Carl Deckard developed a patent for selective laser sintering (SLS) which is a 3D printing technique in which powder grains are fused together by a laser. At the same time, Stratasys Inc. filed a patent for fused deposition modeling (or FDM).

The 90s had its share of 3D printing innovations. But it wasn’t until the 2000s when 3D printing as we know it really gained traction, especially in the media. 2000 saw the world’s first 3D printed kidney, which put the spotlight on the technology. In 2004, home printers started to become more readily accessible, leading to a boom in the maker community that is still going strong today.

2008 saw the world’s first 3D printed prosthetic limb, 2010 the first 3D printed car. There seemed to be no limit to what this technology could do. And in 2013, then-President Barak Obama included it as a major issue in his State of the Union speech.

3D Printing is continuing to grow and expand, with sights focused on the ability to print in more materials. Today printers can use industrial-strength materials such as PEEK, PTFE, nylon, and even metals. There are also several types of research being done on the subject of 3D Bioprinting, which could completely change the medical industry. There truly is no limit to what this technology can do. We are just beginning to scratch the surface of what 3D printing can do.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Types of Springs Used in Energized Seals

Spring-energized seals are able to provide reliable, consistent sealing where other seals fail. The key to their performance lies in the additional sealing force made possible through a spring, but not all springs provide the same type of performance. In this blog post, we are going to talk about the four most common types of spring energizes: canted coil springs, cantilever springs, V springs, and helical springs.

Canted Coil Spring

Canted coil springs are wound at an angle to the axis along the length of the spring. They are able to maintain a very consistent force of over a wide deflection range, which contributes their popularity as a seal energizer. The load is primarily applied at the tip, which is excellent for sealing unless abrasive media is involved.In addition, these springs can be tailored to achieve specific forces. They are ideal for applications where friction needs to be minimized, including flap actuators and encoder and are often found in applications that involve dynamic rotary or reciprocating motion. Canted coil spring energizers work best for moderate to high speed rotary applications.

Cantilever Springs

Cantilever springs, also known as finger springs, have a v-shaped cross-section.These springs have a linear load curve (deflection and force as linearly related). Because of their shape, the load is concentrated at the very front of the seal which makes them a good choice for exclusion  and scraping applications. Spring-energized seals with cantilever springs work well for low to medium speed applications and can be found on hydraulic cylinders, pumps, shocks, and compressors.

V Springs

The V spring, also called a V ribbon spring, is a general purpose energizing spring that provides good performance at a relatively low cost.  which offers good performance at a relatively low cost.  V spring energized seals are well adapted to severe applications, including vacuum pressures and cryogenic temperatures. These seals work well for applications that involve either rotary or reciprocating motion, but also perform well in static applications. In short, V spring energizers are ideal for general purpose applications.

Helical Spring

The helical springs, sometimes referred to as a helical wound spring, consists of a wound ribbon of metal that results in a relatively high load versus displacement curve, which also means their deflection range is quite small. Because of this, it can provide very tight, reliable sealing even in the presence of extreme pressures (including vacuum). Helical spring energized seals also work well for sealing in lightweight gases or liquids. However, they should be limited to either low speed, intermittently dynamic, or static applications where achieving a reliable seal is significantly more important than the effect of friction or the possibility of wear. Helical spring energizers are often used on pipe flanges and crush jackets where the seal jacket needs to be embedded into any surface irregularities.

Full Contact Spring

A Full Contact Spring provides a high-load, continuous spring contact along the entire circumference of the sealing lip. A full contact spring is recommended for extreme sealing conditions, such as those involving cryogenics, vacuum and/or light gases at low pressure. Because of its extreme chemical resistance and temperature applications, it is recommended for high-altitude aerospace and even space exploration missions. 


If you are looking for a sealing solution involving an application where other seals have failed, spring-energized seals are an excellent option. Not only do you have flexibility in the choice of sealing jacket, you can also find spring energizers adapted to the particular challenges you are facing.

by Jackie Johnson Jackie Johnson No Comments

CNC Machining: A Brief Look

Computer Numerical Control, or CNC, Machines have been the gold standard in manufacturing for many decades now. But how did they get started? And how do they work? In today’s blog post we will discuss just that!

A Brief History

Rudimentary versions of Computer Numerical Control machines (CAMS) have been around since the 19th century. But CNC machines as we know them today have been in use since the 1940s. It was during that time that John T. Parsons and Frank L. Stulen of Parsons Corp. in Traverse City, Michigan, developed a machine that could read punched-card calculators to automatically produce a machined part.

Close up of CNC machine at work

Close up of CNC machine at work

How do They Work?

The general idea behind CNC machining is to take a stock material such as metal, wood, or plastic and transform it into a finished product. The machine, which can be anything from a milling machine, to lathe, router, welder, or grinder, relies on instructions from a Computer-Aided Design file, or CAD file. It is important to note that the CAD file does not actually run the machine, but rather creates the code, also known as g-code, for it to follow to create the object.

What is G-Code?    

G-code, also known as ISO code, is a relatively simple computer language specifically designed for the CNC machine to execute. The g-code tells the machine exactly what moves to execute and in which order. It provides a roadmap for the machine to step-by-step create a finished product. G-code was developed by MIT in the late 1950s and by the 60s became standard use for CNC machines.

In Conclusion

CNC machining is a huge advancement in manufacturing, enabling companies to reproduce their products or parts in a way that is much quicker and more efficient. And with the aid of a computer, the make is much more accurate as well.

Need machining solutions? Contact us today to learn more!

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Spring Energized Seals vs. O-Rings

As long as your application involves static pressures, no extremes in either temperature or pressure, and no corrosive chemicals, an elastomeric o-ring will probably suffice. But things become more challenging outside of those conditions and you will need a better sealing solution: a spring energized seal.

O-Ring Seals

O-rings are a common type of seal that’s used in a wide variety of applications. Elastomeric o-rings are made from materials such as silicone, Neoprene, Nitrile, Buna N, and EPDM Rubber and consist of a toroid with a circular cross-section. In fact, the official definition of an elastomer component is that it does not break when stretched 100% (i.e., stretches to twice its original length). 

O-rings can effectively provide a barrier to prevent fluids from leaking and work well for static applications and some dynamic applications as long as there are no extremes in pressure or temperature. However, there are times when a spring-energized seal provides a better sealing solution than an o-ring. 

O-rings often fail due to issues with clearance as high pressures, large temperature changes, or cyclical changes in either pressure or temperature, all of which can cause dimensional changes that force the o-ring into the seal extrusion gap and cause excessive wear that leads to premature failure. In addition, environmental conditions and temperature changes can lead to the elastomeric material becoming brittle, thus losing its ability to stretch and compromising its ability to provide an effective seal.

Spring-Energized Seals

The spring energizer seal is the engineer’s choice when O-Rings cannot provide adequate seal performance.The energized seal applies a consistent force that enables the lip to adapt to the contact surface as it rotates. Because of this, spring-energized seals are often used to effectively maintain a seal even when there are challenges such as vacuum pressures, eccentric contact surfaces, runout, and hardware gaps. In short, where other static and dynamic sealing options fail, spring-energized seals rise to the task.

Operating Conditions Where Spring-Energized Seals Excel

Despite the additional cost, spring-energized seals are preferred over elastomeric o-rings when there are …

  • Extreme pressures (including vacuum pressures)
  • Extreme temperatures (including cryogenic environments)
  • Dynamic (as opposed to static) pressures
  • Corrosive media (when materials such as PEEK and PTFE are used)
  • Cyclic pressures or temperatures

In such conditions, even the best elastomeric O-rings will start losing their ability to seal. They can become brittle in extreme temperatures, and exposure to corrosive media will accelerate their natural wear. Using O-rings in such operating environments can seriously compromise the reliability of equipment and the safety of personnel, not to mention potential environmental impacts.

Additional Benefits

Also keep in mind that spring-energized seals are available with FDA approved jacket materials such as PTFE and PEEK that make them safe for use in applications such as food processing, pharmaceutical, biochemical, and medical. Their extreme durability makes them ideal for harsh environment industries such as petrochemical, oil and gas, and aerospace. 


When all other sealing solutions fail, a spring-energized seal is likely the answer. They consistently provide reliable sealing in operating environments that destroy o-rings, and in turn enhance the dependability, safety, and performance of the equipment that depends on them for proper operation. 

Want to learn more? Contact us today!

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Injection Molding of Fluoropolymers: What You Need to Know

Injection Molded Parts

Fluoropolymers are used in multiple industries, including aerospace, transportation, chemical and petrochemical processing, pharmaceutical, medical, telecommunications, and electronics where they are used for seals, gaskets, bushings, bearings, hoses, tubing, wiring, and even fiber optic cladding. There are multiple ways to manufacture parts and components made from fluoropolymers, and injection molding is one of them.

What Are Fluoropolymers?

Fluoropolymers, as the name no doubt implies, are polymers that are based on bonding between fluorine and carbon. The first fluoropolymer was PTFE (polytetrafluoroethylene), which is perhaps better known by its trade name Teflon. Other common fluoropolymers include ETFE (ethylene tetrafluoroethylene), PFA (perfluoroalkoxy alkane), PVDF (polyvinylidene fluoride), PVF (perfluoralkoxy), FEP (fluorinated ethylene propylene), and ECTFE (ethylene chlorotrifluoroethylene).

They are popular materials because of their properties that include resistance to high temperatures, chemical attacks, and electrical current. They are also low friction, non-toxic, exhibit minimal aging and leaching of chemicals, and non-stick. In addition, many fluoropolymers are biocompatible, making them ideal for medical applications.

Injection Molding Process

Injection molding is a manufacturing method for thermoplastic materials where the plastics are heated almost to their melting point and then fed into aluminum or steel molds at extremely high pressures using a powerful screw mechanism. There are several benefits to injection molding:

  • Can handle high-volume production
  • Labor costs are relatively low
  • Products highly accurate parts that can meet tight tolerances
  • Consistent results
  • Supports fairly complex designs with fine details
  • Produces an excellent surface finish
  • In many instances, the scrap can be recycled

The major cost involved in injection molding is the tooling: to achieve good results, the molds must be high-quality and well designed. However, molds can be configured to make multiple parts at one time with minimal post-processing.

Note that injection molding can be used to manufacture otherwise challenging components, including thin-walled parts. The feasible envelope for parts can typically range from 0.01 in³ to 80 ft³ (depending on the fabricators’ capabilities) and can achieve tight tolerances and smooth surfaces.

Injection Molding Fluoropolymers

While fluoropolymers can be challenging to injection mold, the process is not impossible for most materials. Some of the best fluoropolymers for injection molding include PFA and FEP, which are both melt-processable. Additional consideration may have to be given to the tooling for molding fluoropolymers, including a hot runner system to keep the polymer flowing easily as it moves through the mold. 

PTFE, however, is challenging to injection mold because even when heated above its melting point because it simply will not flow like other thermoplastic polymers. It does soften, but not enough to make injection molding possible. Fortunately, there are several other options when it comes to manufacturing with PTFE, including machining, compression molding, cold extrusion, and isostatic pressing.   


Fluoropolymers are widely used in many different industries and applications. If you are looking for an effective way to reliably manufacture components using a fluoropolymer, injection molding may be an excellent option.

Want to learn more? Contact us today!

by Jackie Johnson Jackie Johnson No Comments

The Different Types of 3D Printing

3D printing has seemingly taken over the world! Because of it’s increasing popularity with both manufacturers and hobbyists, more and more 3D printers are being produced each year. There also many different types of 3D printing technologies, which vary in cost, effectiveness, materials used, speed and cost. These include:

  • Stereolithography (SLA)
  • Selective Laser Sintering (SLS)
  • Fused Deposition Modeling (FDM)
  • Digital Light Process (DLP)
  • Multi Jet Fusion (MJF)
  • Direct Metal Laser Sintering (DMLS)
  • Electron Beam Melting (EBM)

Because there are quite a few, we will be breaking this post into two parts, with the next part coming next week, so stay tuned! 

In the meantime, let’s discuss some 3D printing methods!

FDM Printing

FDM Printing


Fused Deposition Modeling (FDM) is one of the most widely available 3D Printing technology today. It uses a process called material extrusion, where a solid material, usually some form of thermoplastic (PLA, ABS, PET, etc.) is pushed through a heated nozzle attached to the printer head, melting the material. As the printer head moves along specific coordinates, it deposits the material, where it cools and solidifies, forming a solid object. 

  • Relatively Inexpensive
  • Ease of Use
  • Wide Variety of Materials


Stereolithography (SLA) uses a printing method called vat polymerization, where a material called photopolymer resin is exposed to an ultraviolet laser, which is used to draw pre-preprogrammed designs or shapes onto the material. This process is repeated for each layer until a 3D object is completed, and then washed in a solvent to remove excess resin. Because of this, SLA printing is often messy. You are also restricted to printing with resin materials, which can be expensive. The benefits, however, include:

  • Higher quality prints than FDM
  • Faster Print Speed
  • Stronger Finished Products

SLA Printer


Selective laser sintering (SLS) uses a laser to sinter powdered material together until a 3D model is formed. Unlike FDM and SLA, which have become incredibly popular in the hobbyist market, SLS has remained mostly in the realm of industrial manufacturing, because of the high cost (and potential dangers) of the lasers and materials. There are many advantages to SLS printing, including: 

  • The ability to print objects without support structures. 
  • High Strength and Stiffness
  • Good Chemical Resistance
  • Incredibly fast print speed

Stay tuned for next week for part two, where we discuss even more 3D printing methods!

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

How Canted Coils Springs are Used in Medical Applications

Canted Coil Springs

There are several distinct benefits to be had from using canted coil springs in place of more traditional springs. Because of this, it should come as no surprise that these springs are used extensively in medical applications. 

Canted Coil Springs Are Effective Electrical Connectors and Contacts

Canted coil springs are being used more and more for electrical contacts and connectors. Canted coil connectors make it easier to replace leads and lead segments without harming the patient, and lead interface solutions based on canted coil springs can significantly reduce risk to the patient. In some applications, the procedure time and the patient’s recovery time can be reduced through the wise application of canted coil springs. Canted coil springs also provide high contact power density with a minimal amount of temperature rise. In many instances, they can also reduce the size of the medical device and provide multi-channel connections.

Canted Coil Springs Can Provide EMI and RF Shielding

Another benefit of canted coil springs is their ability to provide shielding from harmful EMI and RFI interference in applications such as ultrasound equipment and vital signs monitors. Many times the medical data being transmitted cannot afford a compromise in its integrity of the disruption of the data flow. Canted coil springs can actually be tuned to meet specific impedance specifications so that medical equipment and devices can be protected from dangerous crosstalk interference.

Canted Coil Springs Can Be Used in Spring-Energized Seals

Canted coil springs can be used in spring-energized seals in medical equipment and external devices as well as implantable devices. Spring-energized seals are often used to maintain a seal when there are problems with hardware gaps, runout, eccentric contact surfaces, and vacuum pressures. In short, spring-energized seals can provide an effective seal where other seals would fail, and when canted coil springs are used then a far more consistent spring force can be applied. 

Canted Coil Springs Serve as Reliable Mechanical Connectors


Canted coil springs can provide a reliable connector in three specific ways: 

  • Holding and retaining two parts in alignment with customized forces, often used for surgical instrumentation
  • Securely fastening two parts together while allowing them to still be unlatched (where the latching force can be customized), which is also being used with surgical instrumentation
  • Permanently locking two parts together, including use during orthopedic implant surgery

Unlike most mechanical connector solutions, canted coil springs can achieve these connections with strength, reliability, and incredibly high precision. In addition, when canted coil springs are used as mechanical connectors, there is an option to customize the forces for insertion and breakaway. 

Medical ventilator

Medical Applications of Canted Coil Springs

There are a host of specific medical applications where canted coil springs have proven invaluable. The following is just a sampling:

  • Cochlear implants
  • Implantable medication pumps
  • Insulin delivery systems
  • Orthopedic instruments
  • High-speed surgical power tools
  • Neurostimulators
  • Ultrasound equipment
  • Pain management devices
  • Vital signs monitors
  • Hemodialysis equipment
  • Defibrillators
  • Cardiac rhythm management devices


Canted coil springs are used in connection with everything from neurostimulators to orthopedic implant surgery. Their ability to serve as electrical connectors/contacts, shield from EMI and RF interferences, serve as the energizer in spring-energized seals, and provide tailored mechanical connections make them ideal solutions for many different medical devices and implantables.


by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

The 3 Leading Materials for Effective Back-up Rings

There are three leading materials used for most back-up ring (BUR) applications: PTFE, Nylon, and PEEK. Each of these materials has specific benefits that it can bring to your application, starting with their stiffness and compressive strength.

Why Back-up Rings Are Important

Seal extrusion is one of the most common causes of polymer seal failure. Whether the cause of extrusion is a large gap between the mating surfaces, high temperatures, or extreme pressures, back-up rings can help. The right choice of a BUR can prevent seal extrusion, lengthen the useful life of the seal, and reduce the chances of a catastrophic failure.

PTFE Back-Up Rings

PTFE is well-known for its extremely low friction, dry running capabilities, and outstanding chemical resistance. Filled PTFE (either glass, carbon, graphite, or bronze filled) can handle operating pressures up to 5,800 psi, making it an excellent choice for both medium and high-pressure applications. Virgin PTFE has a much lower maximum operating temperature (around 3,600 psi) and is limited to low-pressure situations. PTFE also has a maximum operating temperature of 575°F, and that combined with chemical compatibility and the high-pressure capabilities of filled PTFE mean that it is an excellent option for harsh condition environments.

Nylon Back-Up Rings

Nylon 6,6 (sometimes written Nylon 6/6 or Nylon 66) is a polyamide material commonly used for back-up rings. It can handle high pressure very well but is limited to temperatures below 186°F. It possesses excellent rigidity, good compressive strength, and thermal stability, all of which are key to effective backup rings.

When used for back-up rings, Nylon is typically filled with Molybdenum Disulfide (MoS2) to achieve an even lower coefficient of friction. It is not recommended for use in wet or humid environments because it does absorb water unless fillers such as glass are added to offset the absorption effects. 

PEEK Back-Up Rings

Another commonly used back-up ring material is PEEK, which can handle temperatures of up to 500°F and pressures up to 20,000 psi. Like PTFE, it is low friction, dry running, and resistant to a wide variety of aggressive chemicals. It is also available with fillers to enhance properties such as compressive strength and stiffness. However, PEEK is much harder than PTFE: PTFE has a Shore hardness of D50 while PEEK has a significantly greater hardness of D85. For these reasons, PEEK back-up rings are often used in aggressive environments, such as those found in the oil and gas industry


If you are having issues with extrusion-related seal failure, polymer back-up rings are a cost-effective solution that can extend the life of your seals. When it comes to polymer back-up ring materials, the top three choices are PTFE, Nylon, and PEEK. While each has its own pros and cons, they are excellent options for solving the problem of seal extrusion. PEEK works best for high pressure, high temperature environments that can involve exposure to corrosive materials. PTFE can also handle high temperatures and corrosive environments, but its maximum operating pressure is lower than that of PEEK. Nylon is also an excellent choice with excellent hardness and thermal stability, with its main limitations being high temperatures and exposure to humidity and moisture. 

by Jackie Johnson Jackie Johnson No Comments

Additive Manufacturing and its Benefits

You’ve seen them on the internet, in libraries and schools and maybe you even know someone who owns one. 3D Printers have changed the way the world and continue to provide many benefits for a number of industries. But how do they work?

Does additive manufacturing, or 3D printing, benefit the industrial market? Additive manufacturing, or 3D printing, benefits the industrial market by reducing tooling costs, allowing for faster manufacturing, and eliminating the need for inventory.

How Additive Manufacturing Works

With additive manufacturing, objects are designed using computer-aided design software (or CAD software) and are then saved as .stl files which are then digitally sliced into ultra-thin layers. It is these layers that are extruded through a hot nozzle or print head and deposited onto the previous layer. The process is repeated layer by layer until a 3D object is formed. 

There are several different materials used in additive manufacturing. Thermoplastics are the most common materials used. These include PET, PEEK, Nylon, ABS, Polycarbonate, etc. Other materials that are often used include metal, ceramic, rubber, and even bio-materials. 

Additive ManufacturingWhat Are the Benefits of Additive Manufacturing?

The benefits of additive manufacturing, particularly for the industrial space, are many! 

Reduced Tooling Costs

Tooling cost is a major driver in the manufacturing industry. And the upfront cost can impede many low-volume manufacturing companies, where a significant amount of capital expenditure is required before the first unit is even produced. But with the lower tooling costs of additive manufacturing, low-volume manufacturers can finally enter the marketplace.  

Quicker Manufacturing

When the success of a business is won or lost based on speed to market, the ability to quickly manufacture goods is imperative. One sure-fire way to be one of the firsts to market is to leverage additive manufacturing to reduce lead time. With 3D-printing, the production time is reduced by weeks or even months. 

No Need for On-Hand Inventory

While traditional manufacturing requires warehouses full of premade parts and products, additive manufacturing allows a business to have a virtual inventory. Part information is stored in the cloud via .stl files and can be printed on demand. This removes the need for warehouse space, saving businesses space, rent money, and piles of parts. 


Additive marketing, or 3D printing, is the manufacturing process of the future. Because of its ease of use, quick turn-around, and relatively low cost, additive manufacturing (AKA 3D printing) is quickly becoming one of the go-to manufacturing processes for a wide variety of industries.

Contact us today to learn more!

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Top Five Polymer Bearing Materials

Polymer bearings can be found in almost any industry and environment, and this includes the clean rooms of electronics to the harsh conditions of the oil and gas industry. And this is no surprise considering the host of benefits that polymer bearings provide, including their resistance to corrosive chemicals, low maintenance, lightweight, and low friction.

So, what exactly are the top five materials used in polymer bearings? The top five polymer bearing materials include Torlon PAI, Bearing Grade PEEK, Bearing Grade PPS, Lubricated PET, and Lubricated Nylon.

1. Torlon PAI

Spring Energized Teflon SealsPAI stands for Polyamide-imide and it is the highest performing polymer that is melt-processable. It offers excellent wear resistance, has an extremely low coefficient of friction,  and can handle operating temperatures up to 500°F. The primary drawback of Torlon PAI lies in its relatively high level of moisture absorption. On the other hand, it has a low coefficient of thermal expansion and a high level of creep resistance, both of which are key characteristics for an effective bearing. Torlon PAI is often used in bushings, bearings, and wear rings.

2. Bearing Grade PEEK

Bearing grade PEEK is known for its excellent wear characteristics, good abrasion resistance, extremely low coefficient of friction, and outstanding chemical resistance. It can handle environmental operating temperatures up to 500°F and performs well even when continuously exposed to hot water and steam. Bearing grade PEEK is also easy to machine, has low moisture absorption, and possesses a high PV rating

3. Bearing Grade PPS

PPS (polyphenylene sulfide), like the other bearing grade polymers discussed so far, has excellent wear resistance and a low coefficient of friction. However, it also offers very good wear resistance and dimensional stability even at elevated temperatures. Bearing grade PPS has a rated operating temperature of 425°F and offers outstanding chemical resistance. In addition, bearings can be made to extremely high tolerances when PPS is used.

4. Lubricated PET

Lubricated PET combines the stiffness, wear resistance, and dimensional stability of PET with the low friction demands of bearing applications. It offers extremely low water absorption, good abrasion resistance, and can be machined to very tight tolerances. It is internally lubricated using a dispersed solid and is dry running (needing no additional lubrication). The internal lubrication is released during operation, further reducing the naturally low coefficient of friction that PET possesses.

The primary drawback of PET lies in its limitations with regard to temperature: its continuous service temperature is 210°F, which makes it unsuitable for extreme temperature service conditions. 

5. Lubricated Nylon

Nylon does an excellent job of balancing toughness and strength while combining good abrasion resistance with the ability to be extruded, cast, or machined. Lubricated Nylon, much like lubricated PET, includes a solid dispersal of lubricants that greatly reduces the standard coefficient of friction of virgin Nylon and allows it to be used in dry running applications. One of the more common lubricants used is MDS or Molybdenum Disulfide. 

The primary issue with Nylon is its ability to absorb up to 7% of its weight water, which can affect its dimensions. However, it does have an extremely high limiting PV rating and excellent wear characteristics. 


The top five polymer bearing materials–Torlon PAI, bearing grade PEEK, bearing grade PPS, lubricated PET, and lubricated Nylon–are commonly used to replace metal bearings in a variety of applications. They offer the wear resistance, high PV ratings, low friction, and chemical resistance that are required. If you are in the market for new or replacement bearings, be sure to consider polymer bearings and bushings, also.