by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Best Materials for Spring Energized Seals

The polymers most commonly used in spring-energized seals are PTFE, PEEK, UHMW PE, Vitron, and Hytrel. All of these are high-performance engineering polymers, but some are better adapted for certain applications than others. In this week’s blog post, we will discuss the best materials for spring energized seals, and how they can be applied for each industry. 

Spring-Energized Seals with Polymer Jackets

Polymer sealing jackets are often chosen over their rubber counterparts for various reasons, including better performance at extreme temperatures, a wider range of chemical compatibility, and lower friction. And, depending on the material under consideration, polymers often provide better specific strength and stiffness. Because of these and other properties, they are often used as the sealing jacket for spring-energized seals.

However, knowing which polymer is best adapted for a specific application can be challenging, especially since there are a wide range of engineered polymers that offer excellent mechanical and chemical properties. What follows is a discussion of the most popular spring-energized seal materials for five industries.

Food and Dairy 

Food and dairy applications can make the design of spring-energized seals more challenging, especially when it comes to the choice of the seal jacket material. Materials must be compliant with FDA CFR 177, contained in Title 21 of the Code of Federal Regulations. And other standards may also apply, such as NSF/ANSI standard 61 for drinking water systems,  3A Dairy sanitary standards 18-03 and 20-27, and (EU) 1935/2004.

Because of such regulations, the two most commonly used jacket materials for spring-energized seals in the food and dairy industry are PTFE (both virgin and certain grades of mineral-filled) and UHMW PE (Ultra High Molecular Weight Polyethylene). Besides their FDA approval, these materials also provide low friction, compatibility with most cleaning and sanitation routines, and a good range of operating temperatures. In addition, both materials are self-lubricating, which eliminates the problem of finding a lubricant that is safe to use.

Aerospace and Defense

Aerospace and defense applications that require a spring-energized seal often turn to materials such as PEEK (Polyether ether ketone)  and PTFE. Spring-energized seals are used with hydraulic systems, fuel systems, actuators, and gimbal pods in everything from massive airliners and space rockets to lightweight, nimble drones. Operating environments may involve extreme temperatures, exposure to aggressive chemicals, and mission-critical performance. Some operating conditions may also involve cryogenic temperatures, for which PTFE and Hytrel work extremely well. Note that Hytrel is a TPC-ET thermoplastic polyester elastomer.

In space applications, temperatures can range from cryogenic vacuum conditions to extremely high temperatures and pressures. For spring-energized seals used in rockets, PTFE is the most common due to its wide operating temperature range, outstanding chemical compatibility, and extremely low friction. In addition, PTFE lends itself to the weight constraints and pressure fluctuations involved with space travel, and has been proven over and over that it can provide mission critical levels of reliability.

Automotive

Automotive seals must withstand rugged, extreme environments that may involve everything from corrosive chemicals to extremely high temperatures. When selecting a seal material for automotive applications, properties such as low friction, wear resistance, resistance to abrasion, and durability are major concerns. 

For automotive applications, the most common choice of seal jacket material for spring energized seals include PTFE and Viton (fluoropolymer elastomer). To provide the best performance in the demanding environment of automotive seals, additives such as MoS2 (Molybdenum Disulfide) or carbon may be added to increase strength, wear resistance, and stiffness or achieve low friction.

Renewable Energy

One of the most common areas in renewable energy that requires the use of spring-energized seals is wind energy. Seals for wind turbines can be extremely challenging to design because of the wide range operating temperatures involved, problems with lubricants that can freeze in cold temperatures, extremely low friction so that energy is not wasted, and reliable performance over a long life. Seals must also exhibit low moisture absorption. 

Wind turbine seals typically use PTFE and UHMW PE, known for their low friction and self-lubricating properties. They also offer extremely low moisture absorption, a good range of operating temperatures, and good wear resistance. In addition, they have good resistance to degradation under constant UV exposure.

Oil and Gas

In the context of the oil and gas industry, LNG plants figure heavily in applications that require the use of cryogenic spring-energized seals. For such cryogenic applications, PTFE and UHMW PE have been found extremely effective. For non-cryogenic environments, Hytrel (thermoplastic polyester elastomer) is another commonly used material along with PTFE. These materials offer good performance in sub-freezing temperatures and are reliable enough to support the spring-energized seal design as it prevents leaks that could be devastating not just to humans but to the environment as well.

For other applications, issues of extremely high temperatures and pressures are involved, such as sealing solutions for wellheads. For those jobs, PEEK is often the preferred material. It possesses low friction, excellent chemical compatibility, a wide operating temperature range, and high strength. In addition, it is also one of the few polymers that can maintain its performance in sour gas environments.

Conclusion

Spring-energized seals can provide gas-tight, highly reliable sealing solutions for some of the most difficult operating environments imaginable when combined with the right material. For many sealing solutions out there, high performance polymers are a perfect complement to the ruggedness of a spring-energized seal in many different industries. If you need a spring-energized seal, regardless of industry, we can help you select the right material to provide a durable, effective seal. Contact Advanced EMC today!

by Jackie Johnson Jackie Johnson No Comments

Polymer Seal Market to Add 1.7X Value by 2031

Polymer seals are becoming increasingly popular across a variety of industries from medical to oil and gas. Materials such as PTFE are leading the polymer seal market, with demand being especially high. As per Fact.MR analysis, the global sales of polymer seals are set to experience a healthy CAGR of close to 6% throughout the forecast period of 2021 to 2031.

In this week’s blog post we will discuss the key takeaways from Fact.MR’s market study.

Oil and Gas Get the Lion’s Share

According to the report, oil & gas end-use is expected to capture highest share and is set to create a US$ 5.5 billion opportunity over the forecast period. This makes sense, as the oil and gas industry has witnessed substantial growth over the past few decades. And due to increasing investments in oil and gas across the globe, it is expected to only grow.

This also effects the seal market, as demands for greater boundary pushing technologies increases with the industry’s growing need to discover new ways to obtain oil. Despite COVID-19 causing a massive downturn in both the oil and gas and the seal market, the FMI expects FMI expects global oil & gas seals market to grow at 3.3% CAGR through 2031.

Europe Leading the Way

Europe, as it turns out, manufactures over 25% of all cars in the world. This makes sense, as some of the world’s top car brands are based in Europe: Mercedes, Audi, Porsche, BMW and Volkswagen to name a few. All of these manufacturers will need polymer seals at some point during the manufacturing process. This high demand results in Europe being one of the largest consumers of polymer seals.

What about the Aviation Sector?

With increase in tourism in Asian countries as well as low air fare, the aircraft industry has experienced incredible growth around the globe. This growth has created the need for more aircrafts, which in turn create the need for more polymer seals.

In Canada and the United States, with leading aircraft manufacturers and OEMs, the market is particularly strong. Because aircraft manufacturing requires high quality seals, and because there are no safe substitutes, the market is set to grow over a rapid pace over the next few years.

COVID-19 and the Seal Market

Like most of the world, the seal market has been disrupted by the COVID-19 pandemic. Because of disruptions in the supply chain, the polymer seal industry has faced setbacks.

One industry that has seen an increase in the use of polymer seals is the healthcare industry. There has been a boom in seals manufactured for medical devices such as ventilators, to the point where many manufacturers were struggling to keep up with the demand.

In Conclusion

COVID-19 has been tough for everyone, and the polymer seal market is no exception. However, dispite facing an uphill battle, the industry has grown and will continue to grow at record rates. Whether it’s seals for oil and gas or aviation, polymer seals are becoming a hot commodity and is set to be one of the fastest growing industries in the next decade.

Need polymer seals? Contact us today!

by Jackie Johnson Jackie Johnson No Comments

Advanced EMC Technologies Now AS9100D Certified Seal Manufacturer

Advanced EMC Technologies is proud to announce that we are officially AS9100 certified! For the past several months we have worked tirelessly to earn our ISO 9001:2015 certification, and this week we have taken the next step in quality excellence by becoming AS9100D certified with SAE International, the leading professional association for engineering professionals. We are now an AS9100D certified seal manufacturer for companies in the aerospace industry. In this week’s blog post, we will discuss what the AS9001D certification is, why we decided to get certified and what this means for Advanced EMC and our customers!

What is AS9100?

AS9100 is an aerospace standard (the AS) that was released by the International Aerospace Quality Group (IAQP, the parent organization of SAE) in 1999 to create a standard quality management system across the aerospace industry, from suppliers to manufacturers.

Before its development, most large aerospace companies used the US Military’s two quality systems- MIL-Q-9858A, Quality Program Requirements, and MIL-I-45208A, Military Specification: Inspection System Requirements. When the US Government adopted ISO 9001, it width drew their quality standards and many commercial companies followed suit. They quickly found that ISO 9001 did not address the specific requirements of their industry, so several companies banded together to create AS9100, based on ISO 9001, to provide a quality management system specific to the aerospace industry.

It has gone through several revisions since its introduction in the late 90s. As ISO updated its standards, so did AS9100. Currently, it is on revision D, to reflect changes in ISO 9001:2015. These include a new awareness clause, counterfeit parts prevention, clearer configuration management and more.

Why We Got Certified and What That Means for You

At Advanced EMC Technologies, we strive to provide our customers with the highest quality products possible, ensuring that our products do the job they are intended to do, do it well, and do it for as long as possible.

We understand the critical nature of these parts in the aerospace industry. For the safety of all involved, it is key that all parts are working as they should. We want to make sure that everything we provide our customers meet the best manufacturing practices for aerospace. Following the AS9100 regulations allow us to meet those demands.

With our AS9100 certification, you can be sure that your product has met stringent requirements from every level from material selection to manufacturing. Our customer service is also held to a high standard, so we can provide the best experience for our customers.

In Conclusion

With our AS9100 certified status, we here at Advanced EMC Technologies can provide your aerospace company the best experience, and best product, possible. With standards set up by industry leaders, our seals, bushings, bearings and other parts will be built with safety and longevity in mind.

For more information, visit our Quality Management page HERE. For sealing solutions, contact us today.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

PTFE Spring Energized Seals for Cryogenic Applications

When cryogenic temperatures are involved, a failed seal can have extremely serious repercussions that can include personal safety, explosions, damage to local ecosystems, and highly expensive downtime. One of the most dependable solutions to date for sealing in cryogenic environments is PTFE spring-energized seals. In this week’s blog post, we will discuss PTFE spring energized seals for cryogenic applications!

Read more

by Jackie Johnson Jackie Johnson No Comments

Energizers used in Spring Energized Seals

PTFE spring-energized seals are one of the most popular choices for engineers in a variety of industries including oil and gas, medical, food and more. The reasons for their popularity are many, including their long service life, even wear, and their ability to perform in some of the harshest environments.  They work well in extreme temperatures; can even perform well in situations where operating conditions can vary significantly.  They usually offer a low compression set, have a long shelf life, and work very well in non-lubricated applications. One of the main reasons for these is the use of energizers, of which there are several different kinds.

As one of the key components of spring energized PTFE seals (it’s even in the name!), each of these energizers offers a different set of characteristics that allow engineers to find just the type of seal to suit their application’s needs.

In this week’s blog post, we are going to look at five different types of energizers, and where they are best used: coil springs, V springs, helical flat springs, cantilevered finger springs, and elastomeric O-rings.

Coil Spring

When people picture the spring energizing seal, the first image that comes to mind may well be the wire coil spring, also known as a spiral pitch spring.  One of its outstanding characteristics is low friction.  The angled coil spring works well where low friction and high pressure are involved, and works best in medium speed applications

V Springs

The V Spring is a cantilever, general-purpose energizing spring, which offers good performance at a relatively low cost.  The V ribbon spring (V ribbon spring energized seal) is the one to look at for the harshest, most severe applications your industry has to face.  It has been accepted as an excellent candidate for cryogenic and vacuum applications.

The v shape of this spring provides a moderate load over a wide deflection range and is used in dynamic and static applications.

Helical Spring

The helical flat spring, also known as a compression spring, is another commonly used alternative. It is typically a cylindrical shaped spring, and uses it’s coiled, mechanical form to store and release energy, which then absorbs impacts or shocks to resist compression or pulling objects.

This energizer is well adapted to a wide range of pressures, from high all the way down to vacuum conditions. It has been found especially suitable for sealing in lightweight gases or liquids. It performs the best under medium speed conditions.

Finger Spring

One outstanding performer is the cantilevered finger spring, also known as a finger spring (probably because it the shape of it reminds you of the end of your finger).

Finger spring energized seals are suited for sealing viscous media as the load is applied to the edge of the sealing lips. Seals energized by this spring also have extremely low friction, and offer low to high pressure sealing. They are best adapted to applications with speeds ranging from low to medium.

Elastomeric O-Ring

While elastomer is often synonymous with rubber, it is actually a highly modifiable polymer. Because of its affordability, ease of installation, and small space requirements, the Elastomeric O-ring is known as one of the most widely adapted sealing solutions. Known for their durability and versatility, elastomeric O-rings are suitable for dynamic or static applications with a wide range of temperature requirements.

An elastomeric O-ring energizer is especially useful when the use of metal must be avoided. It’s adapted well to extreme pressures, much like the helical flat spring.  It also works well when dead volume needs to be minimized.

In Conclusion

PTFE spring energized seals offer extreme temperature, high pressure, chemically inert static and dynamic sealing for the most demanding applications. They achieve this by using a variety of energizers, each with their own benefits depending on the application.

Whether your application is dynamic or static, low pressure or high, there is a spring energized seal for you. And Advanced EMC Technologies can help you find it!

Want to learn more about spring energized seals? Visit our product page HERE! Need sealing solutions? Contact us today.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

PCTFE Ball Valve Seats for Low Permeation Applications

Ball valve seats that show signs of swelling, blistering, or “popcorning” have been permeated at a molecular level. Needless to say, this can cause some serious issues such as leaks and catastrophic failure. The solution is to find a ball valve seat material that is highly resistant to permeation and an excellent choice would be PCTFE. In this week’s blog post, we will talk about PCTFE Ball Valve Seats and how they are used in Low Permeation Applications.

Introduction

Certain types of media may permeate the ball valve seat, leading to swelling, blistering, and leakage. Applications such as chemical processing and petrochemical transport may require a seat material that is resistant to permeation but still exhibits key properties such as low friction, compressive strength, and resistance to deformation is still needed.

How Permeation Works

Permeation refers to the molecular level penetration of gases, vapors, and liquids through a solid material via diffusion. In diffusion, molecules pass from an area of high concentration to an area of low concentration. This can be extremely problematic when a ball valve is being used because of the potential distortion and leaking of the ball valve seat.

Keep in mind that permeation can take place through a surprising variety of materials, including metals and polymers. In addition, some materials are only semipermeable, which means that only ions or molecules with certain properties can pass through the material. 

The rate of permeation is directly related to crystal structure and porosity, which is why factors such as density and molecular structure are important when selecting materials for applications where low permeation is important. 

Why Permeation is a Problem for Ball Valve Seats

Gas permeation can not only compromise gas stream purity but also result in dimensional changes of the ball valve seat. One form of these dimensional changes is swelling, which can occur if the permeating media becomes a part of the molecular structure of the material. In reinforced polymers, such as glass-reinforced PTFE, swelling can cause separation between the glass fibers and the PTFE matrix. 

Another common manifestation of permeation is referred to as “popcorning” or “popcorn polymerization” which occurs due to a polymeric chemical reaction. And among the most notorious source of problems with popcorning and swelling are monomers with extremely small molecular sizes such as Butadiene and Styrene.

Both popcorning and swelling will lead to leakage, and over time popcorning will completely destroy the ball valve seat. This makes the choice of ball valve seat materials extremely important for applications where this is a problem.

PCTFE for Low Permeability Ball Valve Seat Applications

One of the best materials for a ball valve seat application where permeability is a problem would be PCTFE (Polychlorotrifluoroethylene), a thermoplastic chlorofluoropolymer. PCTFE is sometimes referred to as Modified PTFE or PCTFE, as well as by trade names Kel-F, Voltalef, and Neoflon. PCTFE is often thought of as a second-generation PTFE material that maintains the chemical and thermal resistance of PTFE along with its low friction. It is also similar to other fluoropolymers such as PFA or FEP.

One of the defining characteristics of PCTFE is that it has a much more dense molecular structure and a low void and micro-porosity content when compared to similar ball valve seat materials. This gives it a very low permeability coefficient, which means that the likelihood of it swelling or popcorning is far lower than other materials. For example, its permeability for O2, N2, CO2, and H2 are 1.5 x 10-10, 0.18 x 10-10, 2.9 x 10-10, and 56.4 x 10-10 darcy, respectively.

PCTFE also provides improved toughness and strength along with good deformation recovery and excellent creep and cold-flow resistance. In addition, it has a wide operating temperature range of -100°F to 500°F. In fact, it performs extremely well at cryogenic temperatures. Because of its low friction, it also results in a very low ball valve operating torque. PCTFE also exhibits zero moisture absorption and is non-wetting. 

PCTFE works well in operating environments where other polymers may fail. For example, it is well adapted to nuclear service that may involve high radiation exposure, is non-flammable (D 635), and is resistant to attack by the vast majority of chemicals and oxidizing agents. The only chemicals that might lead to slight swelling are ethers, esters, aromatic solvents, and halocarbon compounds.

In addition to its use in applications requiring low permeability, PCTFE is also considered an excellent choice for applications that need a low-outgassing material and is commonly used in semiconductor applications. Also note that there are PCTFE grades that are FDA approved, such as Fluorolon PCTFE 2800. 

Conclusion

Fuel processing and transport, chemical processing, petrochemical systems, and emissions control are just a few of the applications where low permeation materials may be necessary. For such applications, PCTFE is an excellent option for ball valve seat materials because it combines the basic properties necessary for a seat with an extremely low rate of permeation.

If you need a solution to blistering, swelling, or popcorning of a ball valve seat, contact the experts at Advanced EMC. Our sealing team will work with you to find the right ball valve seat material for your application.

by Jackie Johnson Jackie Johnson No Comments

Thermoplastics for Medical Devices

Thermoplastics for medical devices are becoming increasingly common. New materials are often the necessary building blocks for product development and technology breakthroughs in the medical device industry. With novel procedures and treatments emerging rapidly, the equipment and devices required to enhance such advances are frequently limited only by their materials of construction.

A wide variety of thermoplastic resins are used in the medical industry. Most applications have multiple requirements that must be met, which narrows the list of candidate materials considerably. Some of the most common selection criteria include chemical resistance, temperature resistance, impact resistance, elongation or flexibility, strength, stiffness, clarity, dimensional stability, and biocompatibility, among others.

In this week’s blog post, we will discuss some of the most common thermoplastics used in the medical industry.

PTFE

PTFE (Polytetrafluoroethylene), also known by its brand name Teflon, is a fluoropolymer most famous for its non-stick qualities. PTFE is inert to most chemicals and has the lowest coefficient of friction of any thermoplastic. It also has very good UV resistance, hot water resistance and electrical insulation even at high temperatures.

These features make it suitable for a variety of medical applications. It is most commonly used in tubing, keeping devices such as ventilators running smoothly. PTFE coating is also popular for use in vascular medical devices, such as catheters.

PEEK

Like, PTFE, PEEK (Polyetheretherketone) is well suited for a wide variety of medical devices. In particular, PEEK Optima and Zeniva PEEK are suitable for long term implants and have a uniquely similar structure to that of human bone. PEEK is also radiolucent which makes it well suited for dental implants and use in various medical instruments. Not only that, but PEEK is also able to be used continuously to 480°F (250°C) and in hot water or steam without permanent loss in physical properties.

For more hostile environments, PEEK is a high strength alternative to fluoropolymers. Because of this, PEEK is an increasingly popular FDA approved replacement for metal in the medical industry due to its lightweight nature, mechanical strength, radiolucent properties, creep and fatigue resistance, as well as its ease in processing.

UHMW-PE

UHMW-PE (Ultra-High Molecular Weight Polyethylene) is a low-pressure polyethylene resin that has a much higher abrasion resistance and impact strength compared to most plastics. Due to its self-lubricating, non-stick surface, it has a low coefficient of friction that makes it desirable in the medical industry. UHMW-PE’s biocompatibility has made it a popular biomaterial for joint replacements such as hips, knees and shoulders, for decades, as early as the 1960s.

Recently, the resin has been refined in such a way to serve the needs of surgeons doing minimally invasive surgical implants such as cardiovascular surgery. Because of its ability to be shaped into a range of textile constructions, UHMW-PE is suitable for enhancing the design of various implantable cardiovascular devices, including complicated stent grafts and covered stents.

TORLON-PAI

TORLON PAI (Polyamideimide) is one of the highest performing thermoplastics built from the TORLON resin. Its compressive strength is double that of PEEK when unfilled, and about 30% higher than ULTEM PEI. As a medical grade thermoplastic, Torlon offers high modulus, radiolucency, sterilization-compatibility and high wear resistance, making it ideal for components inside high performance and peristaltic pumps. Torlon’s extremely low coefficient of linear thermal expansion and high creep resistance deliver excellent dimensional stability over its entire service range.

In Conclusion

While we only went over a mere handful of thermoplastics, there are many more that are used in the medical device industry. Whether you need tubing for a pump, replacement for a bone, or more, there is a high-quality thermoplastic perfect for the task.

To learn more about polymers and their use in medical devices, check out this blog post HERE.

Need FDA approved seals for your medical device? Contact us today!

by Jackie Johnson Jackie Johnson No Comments

The Benefits of PTFE Spring Energized Seals for Oil and Gas

In the oil and gas industry, having seals that can withstand the extreme environments found in the industry is imperative. PTFE spring energized seals provide the wear resistance and more needed, which is why many engineers are turning to PTFE spring-energized seals for oil and gas operations.

In this post, we are going to take a look at why based on the three key factors for seal selection: temperature, pressure, and media.  

The Problem with Oil and Gas Seals

As competition for natural resources increases, petrochemical companies have begun to look to new locations that pose new challenges, from arctic operations with low ambient temperatures to subsea equipment with high pressures and extreme temperatures.

In addition, companies face higher demands for safety, reliability, and environmentally-friendly designs and processes. On top of that, there is also the challenge of reducing the footprint of structures and equipment for exploration and production of oil and gas. All of these factors combined have driven up the costs involved in exploration and production, and made the design of oil and gas systems far more complex.

The design and selection of appropriate seals is key to many of these issues…

When seals malfunction, unpleasant things result:

  • personal safety hazards,
  • explosions and fires,
  • damage to local ecosystems,
  • downtime,
  • and repair costs.

The solution? PTFE spring energized seals!

Wide Range of Temperatures

Temperature is one of the key aspects of selecting a seal in the oil and gas industry. High temperature steam can cause a seal to become brittle and crack.  Temperatures below the glass transition temperature of a seal can cause a seal to behave as a brittle material, resulting in unexpected failure.

Polytetrafluoroethylene PTFE (Teflon) behaves differently from other plastics when it comes to its behavior at extremely high and cryogenically low temperatures.  There is still considerable debate over what its glass transition temperature is, but researchers agree that it can hold its strength at higher temperatures than most polymers, and still behave in a ductile manner at lower temperatures.

There are several different types of PTFE polymer seal jackets are available for spring-energized seals.  They cover a range of temperatures; for example, polyimide filled PTFE can function in temperatures down to -450° F while glass/moly PTFE can operate in temperatures up to 500° F.

Key Factor #2: Pressure Issues

Pressures between 1,500 psi and 15,000 psi are becoming commonplace, with some applications pressures are up to 25,000 psi. PTFE seals offer excellent performance at both low pressures, where the spring energized seals support sealing even at low temperatures and high pressures.

Pressure specifications for a seal are not just limited to the sealing capabilities, but can affect other properties as well.  For example, pressure can affect the glass transition temperature of a polymer: high pressures can drive down the glass transition temperature of a polymer, causing it to exhibit unexpected brittle behavior.  This is especially critical in sub-sea environments.

Another issue with pressure is extrusion.  There are certain types of filled PTFE that offer extremely high resistance to extrusion: Moly-Filled PTFE, Glass-Moly PTFE, and Polyimide-Filled PTFE.

Key Factor #3: Media

In the oil and gas industry, seals are going to be exposed to chemically aggressive media.  Sour gas and acid gas are some of the most chemically aggressive materials encountered in this industry, but PTFE spring energized seals are resistant to their attacks.  When media such as this are combined with high pressures and extreme temperatures, PTFE still performs well. And the energized springs in the seal help keep it’s form even when exposed to such harsh chemicals.

Conclusion

Oil and gas companies are faced with increasingly complex challenges, and to meet those challenges they need cutting edge equipment with reliable components. PTFE spring energized seals are one of those components, providing a leak-tight seal, excellent performance over a wide range of temperatures, and compatibility with many corrosive chemicals encountered.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

PTFE Rotary Shaft Seals for Medical Devices

Selecting the right rotary shaft seal for a medical application involves many different factors including sanitation and sterilization concerns, material compliance to both national and international standards, and patient safety. While some medical applications still depend on elastomeric sealing solutions, FDA-approved PTFE rotary shaft seals provide far more benefits.

Read more