by Denise Sullivan Denise Sullivan 1 Comment

A Comprehensive Guide to Aerospace Seals

In the aerospace industry, where safety, reliability, and performance are paramount, the importance of high-quality seals cannot be overstated. Seals in aerospace applications must withstand extreme temperatures, high pressures, and aggressive chemicals while maintaining their integrity and performance over extended periods. This guide explores seals’ critical role in aerospace, their unique challenges, and the advanced materials and designs that make them indispensable in the industry.

aerospace seals

The Critical Role of Seals in Aerospace

Aerospace seals are crucial in various systems, including engines, fuel, hydraulic, and environmental control systems. Their primary functions include:

  1. Preventing Leaks: Seals avoid the leakage of fluids (such as fuel, oil, and hydraulic fluids) and gases (such as air and nitrogen), ensuring the proper functioning of systems and preventing environmental contamination.
  2. Maintaining Pressure: Seals help maintain the necessary pressure levels for optimal performance in high-pressure systems, such as hydraulic and fuel systems.
  3. Excluding Contaminants: Seals keep contaminants (such as dust, dirt, and moisture) out of critical systems, protecting sensitive components from damage.
  4. Reducing Friction and Wear: Seals minimize friction and wear by providing a barrier between moving parts, extending the lifespan of components and improving efficiency.

Unique Challenges in Aerospace Sealing

Seals in aerospace applications face several unique challenges that require advanced materials and designs:

1. Extreme Temperatures

Aerospace seals must operate in a wide range of temperatures, from the freezing conditions of high altitudes to the extreme heat of jet engines. Materials must maintain their properties and performance across this temperature spectrum.

2. High Pressures

Seals in hydraulic and fuel systems must withstand high pressures without deforming or failing. This requires materials with high strength and elasticity.

3. Chemical Exposure

Aerospace seals are exposed to aggressive chemicals, including hydraulic fluids, fuels, lubricants, and cleaning agents. They must resist chemical degradation to maintain their integrity and performance.

4. Vibration and Movement

Aircraft components are subject to constant vibration and movement. Seals must be flexible and durable enough to accommodate these dynamic conditions without losing their sealing capabilities.

5. Weight Considerations

In aerospace applications, every gram counts. Seals must provide excellent performance without adding unnecessary weight to the aircraft.

Advanced Materials for Aerospace Seals

To meet these demanding requirements, aerospace seals are made from advanced materials designed for high performance:

1. Fluorocarbon (FKM/Viton®)

Fluorocarbon elastomers are known for their excellent heat and chemical resistance. They are commonly used in fuel and hydraulic systems with high temperatures and aggressive chemicals.

2. Polytetrafluoroethylene (PTFE)

PTFE offers exceptional chemical resistance and low friction, making it ideal for dynamic sealing applications. It can also withstand high temperatures, making it suitable for engines and other high-heat environments.

3. Silicone

Silicone seals provide excellent flexibility and heat resistance and are suitable for various temperatures. They are often used in environmental control systems and other applications where temperature fluctuations are typical.

4. Ethylene Propylene Diene Monomer (EPDM)

EPDM is known for its excellent resistance to weathering, ozone, and aging. It is often used in environmental control systems and other applications exposed to harsh environmental conditions.

5. Polyether Ether Ketone (PEEK)

PEEK is a high-performance thermoplastic with excellent mechanical strength and chemical resistance. It is used in applications where high strength and durability are required.

Types of Aerospace Seals

There are various types of seals used in aerospace applications, each designed for specific functions:

1. O-Rings

O-rings are versatile seals used in a wide range of aerospace applications. They provide a reliable seal in static and dynamic conditions and are available in various materials to suit different requirements.

2. Gaskets

Gaskets seal the space between two mating surfaces, preventing leaks and maintaining pressure. They are commonly used in engine components, fuel systems, and hydraulic systems.

3. Lip Seals

Lip seals are used in dynamic applications to prevent fluid leakage and exclude contaminants. They are often used in hydraulic systems, engines, and gearboxes.

4. Radial Shaft Seals

Radial shaft seals seal the rotating shafts of engines and other machinery. They provide a barrier against fluids and contaminants while allowing the shaft to rotate freely.

5. Face Seals

Face seals provide a seal between two flat surfaces, preventing leaks and maintaining pressure. They are used in various applications, including fuel and hydraulic systems.

Conclusion

Aerospace seals are critical components that ensure aircraft systems’ safety, reliability, and performance. They face unique challenges, including extreme temperatures, high pressures, chemical exposure, and constant vibration. Aerospace seals are made from advanced materials such as fluorocarbon, PTFE, silicone, EPDM, and PEEK to meet these challenges. By selecting suitable materials and designs, aerospace engineers can ensure that seals provide reliable performance in the most demanding conditions, contributing to the aircraft’s overall safety and efficiency.

For more information on aerospace seals and to explore the range of sealing solutions available, visit Advanced EMC Technologies.

by Denise Sullivan Denise Sullivan 18 Comments

Understanding FEP-Viton® (FPM/FKM) and FEP-Silicone: Advanced Seal Face Combinations

In the world of mechanical seals, choosing suitable materials for seal face combinations is crucial for ensuring optimal performance and longevity of your sealing solutions. Among the most reliable and effective materials used in the industry are FEP-Viton® (FPM/FKM) and FEP-Silicone. These materials offer exceptional properties that make them suitable for various applications. Let’s delve into what makes these combinations stand out and how they can benefit your sealing needs.

FEP-Viton®

What is FEP?

FEP, or Fluorinated Ethylene Propylene, is a type of fluoropolymer known for its excellent chemical resistance, low friction, and high-temperature stability. It provides a tough, protective outer layer that enhances the durability and performance of the underlying elastomer.

FEP-Viton® (FPM/FKM) Seal Face Combinations

Viton® (FPM/FKM): Viton®, also known as FPM or FKM, is a high-performance fluoroelastomer that offers exceptional resistance to heat, chemicals, and oils. It is widely used in applications that demand high durability and reliability under harsh conditions.

Benefits of FEP-Viton® Seals:

  1. Enhanced Chemical Resistance: The combination of FEP with Viton® ensures superior resistance to aggressive chemicals, making it ideal for chemical processing.
  2. High-Temperature Stability: Viton® can withstand temperatures up to 200°C (392°F) and, when paired with FEP, offers even more excellent thermal stability.
  3. Improved Durability: The FEP outer layer protects the Viton® core from wear and tear, extending the seal’s life.
  4. Low Friction: FEP’s low friction properties reduce wear and improve the efficiency of the sealing system.

Applications:

  • Chemical processing
  • Oil and gas industry
  • Automotive industry
  • Aerospace applications

FEP-Silicone Seal Face Combinations

Silicone: Silicone elastomers are known for their excellent flexibility, thermal stability, and biocompatibility. They are widely used in applications requiring a soft, pliable material to maintain its properties over a broad temperature range.

Benefits of FEP-Silicone Seals:

  1. Biocompatibility: The combination of FEP and silicone is ideal for medical and pharmaceutical applications due to its non-reactive and biocompatible nature.
  2. Temperature Range: Silicone can operate efficiently across a wide temperature range (-60°C to 200°C or -76°F to 392°F), making it versatile for various environments.
  3. Flexibility: Silicone’s inherent flexibility ensures excellent sealing performance, even in applications with dynamic or irregular surfaces.
  4. Enhanced Durability: The FEP layer provides additional protection, ensuring the silicone core remains intact and functional over extended periods.

Applications:

  • Medical devices
  • Food and beverage industry
  • Pharmaceutical industry
  • Electronics

Why Choose FEP-Viton® and FEP-Silicone Seals?

Combining FEP with either Viton® or silicone creates a sealing solution that leverages the best properties of both materials. These seals are designed to withstand extreme conditions, resist aggressive chemicals, and operate efficiently across a broad temperature range. Their enhanced durability and low maintenance requirements make them cost-effective for demanding applications.

Conclusion

FEP-Viton® (FPM/FKM) and FEP-Silicone seal face combinations significantly advance sealing technology. These seals meet the rigorous demands of various industries by offering superior chemical resistance, high-temperature stability, and exceptional durability. Whether you are in the chemical processing, medical, or automotive sector, these advanced seal combinations can provide reliable performance and extend the life of your equipment.

Contact us today to learn more about these innovative sealing solutions and find the perfect fit for your application needs!