by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Polymer Seals for Electrified Systems: Managing Heat, Voltage, and Friction

Designing Polymer Seals for Electrified Systems: Managing Heat, Voltage, and Friction

The ability do design polymer seals for electrified systems is vital in modern engineering. The current shift toward electrified systems, whether in EV drivetrains, aerospace actuators, or high-voltage power converters, means that engineers must transform how they think about sealing. Traditional seal design focused on pressure and fluid compatibility. Electrified systems however, add three new variables: electrical conductivity, insulation integrity, and heat dissipation.

The wrong choice of polymer can lead to arcing, insulation breakdown, or premature wear, while the right one can enhance reliability and extend component life. This blog post is going to explore how seal designers can manage heat, voltage, and friction for electrified systems.

Polymer Seals for Electrified Systems

Electrified systems subject seals to hybrid stresses: electrical, thermal, and mechanical. Thermal gradients develop near conductive components, especially in high-current zones or power-dense assemblies. Electrostatic fields and stray currents can compromise material integrity, accelerating degradation. Mechanical wear and vibration persist just as they do in traditional systems—but the allowable frictional losses are often much lower.

Different applications bring unique sealing demands. In electric traction motors, for example, shaft seals must prevent the ingress of coolant while also blocking stray currents. DC/DC converters, meanwhile, are in need of seals that double as dielectric barriers.

Balancing Dielectric and Thermal Properties for Polymer Seals for Electrified Systems

Polymers in electrified systems must play a dual role: insulate against high voltage while managing heat generated in compact assemblies. They key properties involved in designing polymer seals for electrified systems include dielectric strength, thermal conductivity, and wear rate, all of which determine seal performance and longevity.

Common polymer choices include:

  • PTFE is chemically inert, possess excellent dielectric strength, and exhibits ultra-low friction, making it ideal for high-speed, low-load applications.
  • PEEK has high mechanical strength and temperature capabilities, meaning it can tolerate heavier loads but at the cost of slightly higher friction.
  • PPS and UHMW-PE are cost-effective options that combine good dielectric resistance with moderate wear performance.
  • Filled compounds (carbon, graphite, glass) are used to enhance wear and sometimes conductivity, though they may reduce dielectric performance.

Creep resistance, thermal aging, and the ability to maintain integrity across temperature extremes all influence selection. In many cases, designers use blended materials or layered seal architectures to balance insulation with heat dissipation.

Managing Heat

Electrified systems are going to generate localized hotspots located near bearings, windings, and current-carrying seals. Without appropriate heat management, polymers can easily soften, creep, or degrade. Effective seal deisgn for electrified system design requires careful consideration of factors such as thermal pathways, geometry, and material stability.

Thin cross-sections, for example, help to minimize thermal buildup ,but must still resist extrusion issues. Conductive fillers or metal housings can help spread heat away from the seal interface. Engineers must also account for the glass transition temperature of materials, their continuous-use temperature, and their oxidation resistance.

Heat cycling has a major influence on seal preload and spring energizers. In EV cooling pumps, for example, repeated swings from –40°C to 150°C demand highly resilient fluoropolymers and careful thermal expansion matching between the seal and shaft.

Managing Voltage

Seals can be damaged by electrical stress over time. Potential issues include dielectric breakdown, corona discharge, and surface tracking can —  all of which lead to performance loss or catastrophic failure.

Engineers can mitigate these issues through material and design strategies such as:

  • Choosing polymers with a high dielectric strength (PTFE, PEEK, PPS)
  • Using conductive fillers to safely dissipate charge buildup.
  • Designing surface contours and creep distances that reduce the risk of arcing 
  • Grounding components to divert stray currents away from sealing interfaces

Managing Friction

Friction directly affects energy efficiency, thermal load, and component life. In electrified systems, even a small amount of frictional increase can have a significant impact on range of performance. 

Designers must strike a careful balance between low friction and effective sealing contact. Surface finish, lubrication strategy, and seal geometry all play a part, and spring-energized PTFE seals are often chosen for their low-leak, low-drag characteristics.

Because many electrified systems operate in dry or low-lubrication conditions, polymers with intrinsic lubricity or dry-film coatings are critical. Comparing dry-film lubricants, filled PTFE blends, and hybrid polymer systems helps determine which approach provides the best combination of sealing and efficiency.

System-Level Integration—The Interplay of Heat, Voltage, and Friction

Heat, voltage, and friction are not independent. Heat increases friction and reduces dielectric strength. High voltage accelerates wear through localized arcing. Frictional heating compounds both mechanical and electrical stress.

System-level analysis is, therefore, essential for engineers designing a successful polymer seal for electrified systems. Finite element analysis (FEA) can be used to model thermal and mechanical stresses, while electrical field modeling predicts voltage gradients across seal interfaces. 

By co-designing seals with their housings and integrating thermal barriers or conductive paths, engineers can significantly improve both the electrical safety and mechanical durability of seals for electrified systems.

Conclusion: Engineering Reliability in the Electrified Era

Electrification means that no longer is seal design just about blocking fluids or retaining pressure. These seals must manage a delicate balance between heat, voltage, and friction.

When properly designed, polymer seals do not just survive these stresses. They enable higher efficiency, longer service life, better range, and greater system reliability. In the electrified era, seal design is an exercise in electrical and mechanical synergy.

At Advanced EMC, our team of experts can help you find the right solution when designing polymer seals for electrified system. Contact us today to learn more.

by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

Spring-Energized Seals & Extreme Environments

Sealing components face relentless stress in environments where extremes are the norm. This is true whether in outer space, deep underwater, or inside a high-temperature reactor. Temperatures can swing, pressures can reach incredible levels, and exposure to corrosive chemicals or radiation might occur daily. In such conditions, failure is costly and can be catastrophic. And that is where spring-energized seals come in.

This article explores how PTFE spring-energized seals provide a robust and reliable solution for sealing in extreme environments. We will examine the specific challenges and explain why spring-energized seal technology is critical for mission success, especially when paired with high-performance polymers like PTFE.

Extreme Environments and Their Sealing Challenges

Designing reliable seals for extreme environments requires an in-depth understanding of the forces at play. In many mission-critical systems, failure is not an option. However, high temperatures, aggressive chemicals, radiation, and pressure differentials constantly threaten seal integrity. Below is a closer look at the environmental factors that make sealing so demanding.

Temperature Extremes

High Temperatures

Seals exposed to elevated temperatures face thermal expansion, loss of elasticity, material degradation, and increased wear. Standard elastomers may soften, creep, or chemically break down under continuous thermal stress, leading to leakage or failure. 

Cryogenic Temperatures

At the opposite end of the thermal spectrum, cryogenic conditions pose equally complex problems. Materials may contract significantly, lose ductility, and become brittle. Traditional seals can shrink away from sealing surfaces in these conditions, resulting in leaks. 

High Pressure

Systems operating under extreme pressure are subject to tremendous mechanical stress. Without the right materials and geometry, seals permanently deform or lose contact with the sealing surfaces. Maintaining long-term reliability in such environments requires mechanically reinforced and dimensionally stable seals.

Chemical Exposure

Corrosive Media

Many industrial applications involve aggressive chemicals that quickly degrade standard elastomers and plastics. Exposure to acids, solvents, fuels, and other corrosive substances can cause swelling, embrittlement, or chemical attack.

Outgassing

Even trace amounts of outgassed compounds from seal materials can cause severe contamination in ultra-clean or vacuum environments. Outgassing is especially problematic when organic compounds interfere with optics, electronics, or surface chemistry. This means that seals in these environments must be made from materials with exceptionally low volatility and minimal extractables.

Radiation

Radiation is another factor that compromises many polymers’ structural integrity and performance. In nuclear and aerospace environments, ionizing radiation can cause chain scission or crosslinking, leading to embrittlement, cracking, and dimensional instability. Seals used in these settings must resist exposure to short- and long-term radiation without degrading.

PTFE Spring-Energized Seals: A Solution Built for Extremes

Sealing in harsh environments demands more than just durability. It requires materials and designs that actively maintain sealing force under fluctuating or extreme conditions. And that is precisely where PTFE spring-energized seals excel.

What Is a PTFE Spring-Energized Seal?

A spring-energized seal consists of two core components: a polymer jacket and an internal energizing spring. The jacket provides chemical resistance and mechanical barrier properties. The spring, on the other hand, ensures consistent contact pressure against the sealing surface, even when temperatures, pressures, or mechanical conditions change.

As conditions shift, the spring compensates for pressure or material contraction changes, keeping the seal engaged. This challenge makes spring-energized seals ideal for dynamic sealing applications, including reciprocating and rotary motion.

Spring types include:

  • Cantilever springs – Ideal for low to moderate pressures and cryogenic environments
  • Helical or coil springs – Used for higher pressures and more demanding mechanical loads
  • Canted coil springs – Suitable for sealing and electrical conduction, where uniform force is critical

Why Use PTFE for the Spring-Energized Seal Jacket?

Polytetrafluoroethylene (PTFE) is one of the most chemically resistant and thermally stable materials. And it exhibits a unique combination of properties that make it well-suited for extreme environments:

  • Broad Temperature Range: PTFE maintains performance from cryogenic levels (below -250°F) to elevated temperatures exceeding 500°F.
  • Chemical Inertness: It resists nearly all corrosive media, including strong acids, bases, fuels, and solvents.
  • Low Friction Coefficient: Ideal for dynamic applications where smooth, wear-resistant motion is essential.
  • Non-outgassing: PTFE has minimal extractables, making it suitable for ultra-clean vacuum or space environments.
  • Radiation Resistance: Certain PTFE formulations offer resistance to ionizing radiation.
  • Compliant with Regulatory Standards: Variants of PTFE that meet FDA, USP Class VI, and semiconductor purity standards are available.

When combined with the appropriate spring energizer, a PTFE seal delivers a balance of chemical resistance, mechanical compliance, and thermal stability that is difficult to match with conventional elastomers or plastic seals.

Benefits of PTFE Spring-Energized Seals

PTFE spring-energized seals offer a range of performance advantages that make them indispensable in extreme operating conditions. Unlike conventional elastomeric seals, they are engineered to maintain tight sealing integrity across wide temperature and pressure ranges while resisting chemical and mechanical degradation.

Reliable Sealing Across Variable Conditions with Spring-Energized Seals

The built-in energizing spring provides consistent contact pressure even when temperatures fluctuate or the sealing surfaces shift due to thermal cycling or pressure changes. Because of this active sealing force, the seal ensures leak-tight performance in static and dynamic applications, whether in cryogenic fuel systems or high-pressure hydraulic actuators.

Exceptional Chemical Compatibility with PTFE

PTFE’s chemical inertness allows these seals to withstand aggressive fluids such as acids, fuels, solvents, and oxidizers. They are widely used in chemical processing, aerospace fuel systems, and pharmaceutical manufacturing—anywhere seal failure from chemical attack would be catastrophic.

Thermal Stability and Cryogenic Performance of PTFE Spring-Energized Seals

With a temperature tolerance ranging from below -250°F to above 500°F, PTFE spring-energized seals outperform most other sealing materials. They maintain flexibility and sealing force in cryogenic applications and do not degrade under high thermal loads.

Low Friction and Wear Resistance

PTFE’s low coefficient of friction minimizes heat generation and wear in dynamic sealing applications, which is especially important in systems requiring precise motion control or long service intervals, such as medical devices or aerospace actuators.Long Service Life

The combination of a resilient spring and a chemically inert jacket gives spring-energized seals excellent durability, even under continuous mechanical and thermal stress. This results in reduced downtime, fewer seal replacements, and lower maintenance costs over the lifecycle of the equipment.

Design Flexibility of Spring-Energized Seals

Spring-energized seals can be tailored for specific performance requirements, including:

  • Spring force
  • Seal geometry
  • Jacket fillers (e.g., glass, carbon, molybdenum disulfide)
  • Regulatory compliance (FDA, USP, NSF, etc.)

This level of customization ensures that each seal is optimized for its intended environment and operational demands.

Oil and Gas Industry During COVID-19

Applications of Spring-Energized Seals in Extreme Conditions

Because of their resilience and adaptability, engineers use PTFE spring-energized seals across a wide range of industries where standard sealing solutions cannot survive. These applications are defined by extremes—whether of temperature, pressure, chemical exposure, or environmental cleanliness.

Aerospace

In aerospace systems, seals must withstand extreme temperature variations, exposure to high-altitude vacuum conditions, and, in some cases, radiation. Engineers use PTFE spring-energized seals in fuel systems, cryogenic propulsion lines, actuators, and cabin pressure systems. Their low outgassing properties make them suitable for spacecraft and satellite environments.

Oil and Gas

Oilfield equipment routinely faces high-pressure differentials, corrosive drilling fluids, and wide temperature swings, from surface operations to downhole tools. Spring-energized seals made with chemically resistant PTFE compounds are commonly used in valves, pumps, and logging tools to maintain long-term sealing integrity under these harsh conditions.

Semiconductor Manufacturing

The semiconductor industry demands ultra-clean conditions where even minor contamination can lead to costly defects. PTFE seals are ideal for vacuum and plasma environments due to their low outgassing characteristics and resistance to aggressive process chemicals. Engineers use these seals in wafer handling systems, etching tools, and deposition chambers.

Medical and Pharmaceutical Equipment

Sealing solutions must be chemically inert, biocompatible, and often sterilizable in medical and pharmaceutical applications. Engineers integrate PTFE spring-energized seals in drug delivery systems, diagnostic devices, and sterile processing equipment where cleanliness, chemical resistance, and regulatory compliance are paramount.

Defense and Nuclear

Exposure to ionizing radiation, pressure cycling, and high temperatures is common in defense and nuclear environments. PTFE spring-energized seals are chosen for these applications because they maintain mechanical integrity under radiation and resist degradation over long periods of use. Applications include missile systems, nuclear reactor controls, and radiation-shielded enclosures.

Spring-Energized Seals are Ideal for Harsh Environments

Sealing in extreme environments—whether it involves intense heat, deep cryogenics, corrosive chemicals, or high-radiation fields—requires more than conventional materials and designs. PTFE spring-energized seals provide a proven solution engineered to withstand the most demanding conditions across aerospace, oil and gas, semiconductor, medical, and nuclear applications.

Combining the chemical inertness and thermal stability of PTFE with the adaptive force of a spring energizer, these seals maintain tight, reliable performance where others fail. Their low friction, minimal wear, and customizability make them the preferred choice for mission-critical systems where failure is not an option.

If you are facing extreme sealing challenges, trust the experts at Advanced EMC. Our PTFE spring-energized seals are engineered for durability, precision, and performance, no matter how harsh the environment. Contact us today to find the right sealing solution for your application.