by Sara McCaslin, PhD Sara McCaslin, PhD No Comments

How Polymer Bearings Improve Efficiency in Electrified Systems

Polymer bearings improve efficiency in electrified systems by minimizing frictional losses, reducing maintenance demands, and enabling more compact, lightweight designs. Increasing electrification across transportation, robotics, aerospace, and industrial automation demands components that can sustain high performance in small spaces. In compact, high-speed electric systems, traditional metallic or lubricated bearings can increase drag, require more maintenance, and add unnecessary weight. 

In this blog post, we discuss how PTFE plane bearings deliver measurable efficiency gains by reducing friction, eliminating external lubrication, and enhancing durability under demanding operating conditions.

The Role of Bearings in Electrified Systems

Bearings play a pivotal role in electrified systems, supporting rotating shafts, actuators, and linkages while minimizing friction and wear. Their role in maintaining high precision shaft alignment for rotor-stator clearance and impacting electromagnetic efficiency cannot be overstated. 

Bearings have a significant impact on system efficiency. As far as energy loss pathways, polymer bearings offer reduced friction, generate less heat, and can avoid issues with lubrication drag when self-lubricating polymers are used. This understanding is crucial for designing high-efficiency electrified systems.

It’s important to remember that higher friction leads to a loss of energy, which manifests as heat generation. This can be critical to efficiency in many motor-driven applications. However, with the use of polymer bearings, particularly those made from PTFE, this energy loss can be significantly reduced, offering a promising future for your systems. 

PTFE as a Bearing Material for High-Efficiency Electrified Systems

PTFE is an excellent choice as a material for plane bearings. It exhibits an exceptionally low coefficient of friction (both static and dynamic), operates over a broad temperature range that includes both cryogenic and high ranges (-200°C to +260°C), and is chemically inert to coolants, dielectric fluids, and environmental contaminants.

Related to its extremely low coefficient, there are other tribological advantages. For example, PTFE has a very low stick-slip tendency, even at low speeds or when oscillatory motion is involved. It is naturally self-lubricating, and that can be enhanced or tailored through the use of embedded solid lubricants or fillers.

PTFE also has excellent electrical insulation properties that prevent stray current corrosion. And its non-magnetic nature eliminates the potential of it causing EMI interference in sensitive electronic systems.

Optimized PTFE Formulations 

Several different fillers and formulations for PTFE can enhance specific properties. 

Glass-Filled PTFE

Glass-fileld PTFE possesses increased wear resistance under high-load, low-speed applications and also has improved dimensional stability for operations that involve thermal cycling.

Carbon-Filled PTFE

When filled with carbon fibers, PTFE will have a higher compressive strength and improved thermal conductivity for heat dissipation. This type of filled PTFE is also suitable for high PV (pressure × velocity) values in compact electric drive systems.

Bronze-Filled PTFE

Bronze-fileld PTFE has an enhanced load capacity but at the cost of slightly higher friction. Such trade-offs are often required for torque-heavy systems.

Graphite or MoS₂-Filled PTFE

This type of filled PTFE is optimized for dry-running, high-frequency reciprocation without lubrication.

Hybrid Composites

Hybrid composites are multi-filler systems that can achieve combined strength, low wear, and static dissipation.

How Polymer Bearings Improve Efficiency in Electrified Systems

Reduction of Frictional Losses

High-performance polymer bearings exhibit coefficients of friction as low as 0.05–0.15, versus 0.35–0.60 for bronze. This lower drag reduces torque demand in electric motors, extending battery life in EVs and robotics, increasing range, and allowing smaller battery packs without performance loss.

Thermal Efficiency

Less friction means less heat. Polymer bearings ease cooling system demands, enabling smaller, lighter thermal management components. Lower temperatures maintain dimensional stability under continuous duty, extending service life and preventing heat-related failures.

No External Lubrication Requirement

Self-lubricating polymers eliminate grease and oil, removing parasitic drag from lubricant shear in high-speed applications. In automation, this reduces maintenance, prevents contamination, and increases uptime by simplifying bearing service.

Design Considerations for Maximizing Bearing Efficiency

The table below discusses some of the key design considerations when seeking to maximize the efficiency of PTFE plane bearings.

Design FactorKey ParametersBest Practices
Load and Speed RatingsPV limits vary by PTFE formulation: Virgin PTFE ~1,000–3,000 psi·ft/min (continuous), Filled PTFE 4,000–10,000+ psi·ft/min (continuous). Intermittent operation allows higher PV.Select formulation based on duty cycle; verify continuous PV ratings for heat management; consult material data sheets.
Thermal Expansion ManagementCTE: ~100–200 × 10⁻⁶/°C (several times higher than metals).Design housings for CTE mismatch; use press-fit for stable conditions, interference-fit for high load, adhesive bonding for thermal cycling or shock loads.
Shaft Surface Finish and HardnessRa: 8–16 µin (0.2–0.4 µm). Hardness: ≥55–60 HRC.Maintain Ra within range for transfer film adhesion; use hardened stainless steel, hard-chromed steel, or ceramic coatings.
Electrical IsolationPTFE is inherently dielectric and is used to prevent ground loops in motors.Maintain insulation integrity in housings; use insulating sleeves, washers, or barriers under load and vibration.

Applications Where Polymer Bearings Improve Efficiency

PTFE bearings in planetary gearsets and cooling pumps cut frictional losses, reduce parasitic drag, and extend service life—boosting drivetrain efficiency without complex lubrication systems.

Dry-running PTFE bushings in flap, trim, and thrust control actuators for aerospace applications significantly reduce weight, eliminate lubrication hardware, and deliver consistent torque across extreme temperatures.

In compact gearboxes for robotics and automation, PTFE bearings lower inertia and friction, enabling smaller motors, faster cycle times, and improved positional accuracy in high-speed automation.

In wind turbine yaw and pitch systems, PTFE bearings provide low-friction rotation, corrosion resistance, and electrical isolation to protect control electronics and improve responsiveness.

Conclusion

Polymer bearings, especially those manufactured from PTFE, can help improve the efficiency of electrified systems. Their extremely low friction, self-lubrication, and wide temperature range are direct benefits. And the performance of PTFE bearings can be customized through the use of fillers and hybrids.

If you’re considering PTFE as an option for plane bearings in an electrified system, contact Advanced EMC. Our engineers are ready to work with you to find the correct bearing solution for your design.

by Brandon Pascual Brandon Pascual No Comments

The Ultimate Guide to PTFE Sheets: Unleashing the Power of the Most Versatile Material on the Planet

Hey there, innovators! Are you ready to unlock the secrets of the most incredible material in the universe? Look no further than PTFE sheets!

Imagine a material that’s like a superhero cape – it’s non-stick, chemical-resistant, and can withstand temperatures that would melt lesser materials like a popsicle on a hot summer day. Sounds like science fiction, right? But trust us, PTFE sheets are the real deal.

THE EVOLUTION OF PTFE UNRAVELING THE HISTORY AND ADVANCEMENTS IN PTFE FIBER AND POLYMER

What are PTFE Sheets?

PTFE (Polytetrafluoroethylene) sheets are made from a unique polymer that’s like a molecular ninja – it can dodge and weave around chemicals, heat, and even radiation like a pro. This means that PTFE sheets can be used in some of the most extreme environments on the planet, from the depths of space to the heart of a nuclear reactor.

Properties of PTFE Sheets:

Rotary Shaft Seals for Oil and Gas Industry | Advanced EMC Technologies

Chemical Resistance: PTFE can withstand almost all chemicals.

High Temperature Tolerance: It remains stable from -200°C to +260°C.

Non-stick Surface: Few substances will permanently adhere to a PTFE coating.

Low Friction: PTFE has one of the lowest coefficients of friction of any solid.

Semiconductor circuit board

High Dielectric Strength: Excellent insulator for electrical components.

Non-Flammable: It is used in high-temperature environments without risk of fire.

Spring Energized PTFE Seals


Applications of PTFE Sheets

The possibilities are endless! With PTFE sheets, you can create:

Gaskets and Seals: Ideal for applications that require resistance to aggressive chemicals and high temperatures.

Bearings and Bushings: Provides a frictionless surface to reduce wear and tear.

Liners and Coatings: Protects equipment from corrosion and contamination.

Insulators and Dielectrics: Used in electrical applications due to its high dielectric strength.

Spring Energized Teflon Seals

Medical Devices: Biocompatible and used in various surgical instruments and implants.

Aerospace Components: Withstands the extreme conditions of space.

Food Processing Equipment: Non-stick and easy to clean, perfect for hygienic applications.

Energy Storage Systems: Durable and stable, ideal for use in batteries and fuel cells.

THE EVOLUTION OF PTFE: UNRAVELING THE HISTORY AND ADVANCEMENTS IN PTFE FIBER AND POLYMER


Real-World Applications of PTFE Sheets

PTFE sheets are used in a wide range of industries, from aerospace to medical devices. Here are some real-world examples of how PTFE sheets are being used:

Aerospace: PTFE sheets are used in the manufacture of aircraft and spacecraft components, such as seals, gaskets, and bearings. Their ability to withstand extreme temperatures and chemical exposure makes them ideal for these applications.

Medical Devices: PTFE sheets are used in the production of medical devices, such as implantable devices, surgical instruments, and diagnostic equipment. Their biocompatibility and non-stick properties make them suitable for a wide range of medical applications.

Spring Energized Teflon Seals

Food Processing: PTFE sheets are used in the production of food processing equipment, such as conveyor belts, seals, and gaskets. Their non-stick and chemical-resistant properties ensure hygiene and durability.

Energy Storage: PTFE sheets are used in the production of energy storage systems, such as batteries and fuel cells. Their thermal stability and chemical resistance enhance the efficiency and longevity of these systems.

EXPANDED PTFE VS. PTFE


Case Study: PTFE Sheets in Aerospace Applications

Background: A leading aerospace manufacturer was facing challenges with traditional sealing materials in their jet engines. The extreme temperatures and aggressive chemicals were causing frequent failures and maintenance issues.

Solution: The manufacturer switched to PTFE sheets for gaskets and seals. PTFE’s high thermal stability and chemical resistance provided a durable solution that could withstand the harsh operating conditions.

Results:

  • Increased Reliability: The use of PTFE sheets significantly reduced the frequency of seal failures.
  • Cost Savings: Maintenance costs dropped due to the longer lifespan of PTFE seals.
  • Performance Improvement: The overall performance and efficiency of the jet engines improved, leading to higher customer satisfaction.

UNDERSTANDING THE DIFFERENT TYPES OF COMPOSITE BUSHINGS IN TECHNOLOGY


So…

So, what are you waiting for? With PTFE sheets, the possibilities are endless. Whether you’re a seasoned engineer or just starting out, we invite you to join the PTFE revolution!

PTFE sheets are incredibly versatile, offering unmatched chemical resistance, thermal stability, and non-stick properties. They are essential in various industries, from aerospace to medical devices, providing reliable and long-lasting solutions.

Ready to explore the incredible benefits and applications of PTFE sheets? Click here to get started or contact us at Advanced EMC Technologies today!

PTFE SHEET FLASH SALE!

Available Sizes and Pricing

Our PTFE sheets are available in a variety of thicknesses to meet your specific needs:

1/32″ Thickness

Price Per Sheet: $25.00

Weight Per Sheet: 6 lbs

1/16″ Thickness

Price Per Sheet: $50.00

Weight Per Sheet: 12 lbs

3/32″ Thickness

Price Per Sheet: $77.00

Weight Per Sheet: 18 lbs

1/8″ Thickness

Price Per Sheet: $100.00

Weight Per Sheet: 24 lbs

3/16″ Thickness

Price Per Sheet: $110.00

Weight Per Sheet: 35 lbs

Technical Data on PTFE Sheets

Polytetrafluoroethylene (PTFE)

Thickness Range: 0.79375 mm to 4.7625 mm

Sheet Sizes: 1219.2 mm x 1219.2 mm

Density: 2.2 g/cm³

Tensile Strength: 20-30 MPa

Elongation at Break: 300-500%

Hardness: Shore D 50-65

Temperature Range: -200°C to +260°C

Thermal Conductivity: 0.25 W/mK

Dielectric Strength: 60-80 kV/mm

Chemical Resistance: Excellent resistance to most chemicals, including acids, bases, and solvents

Water Absorption: <0.01%

Flammability: UL 94 V-0

Benefits of Our PTFE Sheets

Chemical Resistance: Withstand aggressive chemicals.

Thermal Stability: Maintain properties in extreme temperatures.

Non-stick Surface: Easy cleaning and maintenance.

Low Friction: Reduce wear and extend the life of mechanical parts.

High Dielectric Strength: Ideal for electrical applications.

Non-Flammable: Safe for high-temperature environments.

Additional Resources

Contact Information: