by Brandon Pascual Brandon Pascual No Comments

Advanced EMC Technologies: Revolutionizing Sealing Solutions Across Industries

Advanced EMC Technologies is synonymous with innovation and excellence in PTFE sealing solutions. Our products are designed to meet the most demanding requirements across various industries. In this blog, we delve into real-world application examples to showcase the exceptional capabilities of our PTFE rotary shaft seals in diverse fields such as oil and gas, renewable energy, aerospace, and space exploration.

Real-World Application: PTFE Rotary Shaft Seals in Oil and Gas Drilling

Challenge: In the oil and gas industry, drilling operations face extreme conditions, including high pressures, temperatures, and exposure to harsh chemicals and abrasive materials. Traditional seals often fail under these conditions, leading to costly downtime and repairs.

Solution: Advanced EMC Technologies’ PTFE rotary shaft seals provide a reliable solution for these challenging environments. Let’s explore how our seals excel in this application:

High-Pressure Resistance: During drilling operations, equipment such as mud pumps and rotary steerable systems experience high pressures. Our PTFE seals can withstand pressures up to 15 bar, ensuring continuous operation without seal failure.

TYPES OF SEALS FOR OIL AND GAS INDUSTRY

Broad Temperature Range: The temperature range in drilling operations can vary significantly, from sub-zero temperatures in deep-sea environments to high temperatures encountered during drilling. Our seals operate efficiently from -40 to +220°C, providing unmatched reliability.

THE BENEFITS OF PTFE SPRING ENERGIZED SEALS FOR OIL AND GAS

Chemical Resistance: Drilling fluids and chemicals used in oil and gas operations can be highly corrosive. Our PTFE seals offer exceptional resistance to a wide range of chemicals, preventing degradation and ensuring long-lasting performance.

HOW TO DESIGN AND SELECT SEALS FOR OIL AND GAS

Minimal Friction and Wear: Equipment downtime due to seal failure can be costly. Our PTFE rotary shaft seals are designed with a durable sealing lip that exhibits minimal friction and wear, reducing maintenance frequency and extending the life of the equipment.

THE OIL AND GAS INDUSTRY DURING COVID-19

Impact: By using our PTFE rotary shaft seals, oil and gas companies can achieve higher operational efficiency. The seals’ ability to withstand extreme conditions reduces the risk of equipment failure, ensuring continuous drilling operations and translating into significant cost savings.


Enhancing Energy Efficiency: PTFE Seals in Renewable Energy

Challenge: The renewable energy sector, including wind and solar power, demands reliable sealing solutions that can withstand environmental extremes and ensure efficient operation. Components must handle wide temperature ranges, exposure to elements, and continuous motion.

Solution: Advanced EMC Technologies’ PTFE seals are ideal for renewable energy applications. Here’s how:

Weather Resistance: Our seals provide excellent resistance to UV exposure, moisture, and extreme temperatures, making them perfect for outdoor applications such as wind turbine blades and solar panel mounts.

BENEFITS OF SPRING-ENERGIZED SEALS FOR WIND TURBINES

Durability: The high wear resistance of our PTFE seals ensures longevity, reducing the need for frequent maintenance and replacements in renewable energy installations.

WHEN TO USE A PTFE ROTARY SHAFT SEAL

Efficiency: By minimizing friction and wear, our seals contribute to the overall efficiency of energy generation systems, ensuring optimal performance and reduced energy loss.

SPRING-ENERGIZED SEALS FOR THE WIND INDUSTRY

Impact: Wind turbines and solar panels equipped with our PTFE seals perform more efficiently and require less maintenance, leading to lower operational costs and more sustainable energy production.


Taking Flight: PTFE Seals in Aerospace

Challenge: Aerospace applications demand sealing solutions that can endure high altitudes, temperature fluctuations, and extreme pressure conditions. Aircraft components require seals that guarantee safety and reliability.

Solution: Advanced EMC Technologies’ PTFE seals are designed to meet these stringent requirements. Here’s why our seals are a top choice for aerospace:

Temperature Tolerance: Our seals perform effectively across a broad temperature range, from the cold of high altitudes to the heat generated by aircraft engines.

A COMPREHENSIVE GUIDE TO AEROSPACE SEALS

Pressure Resistance: The high-pressure resistance of our PTFE seals ensures reliability in hydraulic systems, fuel systems, and other critical components.

SPRING-ENERGIZED SEALS FOR SPACEFLIGHT

Lightweight: Weight is a critical factor in aerospace applications. Our PTFE seals are lightweight yet robust, contributing to overall aircraft efficiency without compromising on performance.

PTFE AEROSPACE SEALS

Impact: Our seals ensure that aircraft components operate smoothly and safely, reducing the risk of mechanical failures and enhancing the overall reliability and efficiency of aerospace systems.


Reaching for the Stars: PTFE Seals in Space Exploration

Challenge: Space missions involve extreme conditions, including vacuum, radiation, and cryogenic temperatures. Seals used in rockets and spacecraft must offer exceptional reliability and durability to ensure mission success.

Solution: Advanced EMC Technologies’ PTFE seals are perfect for space applications. Here’s how they make a difference:

Cryogenic Performance: Our seals maintain integrity at cryogenic temperatures, crucial for handling rocket fuels like liquid oxygen (LOX) and liquid hydrogen.

SEALS IN SPACE: THE UNSUNG HEROES OF ROCKETRY

Vacuum Compatibility: PTFE’s properties make our seals ideal for use in the vacuum of space, where traditional materials might fail.

A COMPREHENSIVE GUIDE TO AEROSPACE SEALS

Chemical Inertness: The chemical resistance of our PTFE seals ensures they can withstand exposure to various rocket propellants and other harsh substances used in space missions.

ADVANCEMENTS IN AEROSPACE DYNAMIC SEALS: ENHANCING HIGH-TEMPERATURE CAPABILITIES FOR AEROSPACE APPLICATIONS

Impact: Our seals play a vital role in the success of space missions by ensuring the reliability and safety of critical components, from rocket engines to spacecraft systems.


Why Choose Advanced EMC Technologies?

  1. Customization: We understand that each application has unique requirements. Our team works closely with clients to design and manufacture customized PTFE seals that meet specific operational needs.
  2. Quality Assurance: Our seals are manufactured to the highest standards, ensuring consistent quality and performance. We utilize advanced materials and manufacturing processes to deliver superior products.
  3. Expert Support: From initial consultation to after-sales support, our team of experts is dedicated to providing exceptional service. We assist clients in selecting the right seals and offer ongoing support to ensure optimal performance.

Advanced EMC Technologies‘ PTFE rotary shaft seals are transforming industries by providing reliable, high-performance sealing solutions. Our seals are engineered to excel in the most challenging environments, ensuring operational efficiency, cost savings, and environmental safety.

Whether it’s drilling deep in the earth, harnessing the power of the wind and sun, soaring through the skies, or exploring the final frontier, Advanced EMC Technologies has the sealing solutions to keep your operations running smoothly.

For more information about our products and services, visit our website or contact our sales team at Sales@advanced-emc.com. Let Advanced EMC Technologies be your trusted partner in sealing solutions for all your industrial needs.

by Denise Sullivan Denise Sullivan No Comments

Rotary Shaft Mating Surfaces: What You Need to Know

 

rotary shaft mating surfaces

Rotary seals are essential to maintaining the life of the equipment. While choosing the appropriate rotary seal materials, the rotary shaft mating surfaces are equally important. 

Below, we will discuss rotary seals, materials used for seals, and rotary shaft properties.

Rotary Seals

Rotary seals work to help keep the system lubricated while excluding contaminates. A properly fitting seal can positively impact the life of the lubricant. Oil’s life span at 86°F (30°C) is 30 years. However, as the oil heats up, the life span diminishes rapidly to no more than a 30-day life span.

The addition of contaminants and water also limits the life of the oil and the ball bearings. For example, adding .002% water into the oil lubricant will reduce the ball bearing’s life by 50%. The cause of the ball-bearing integrity loss is called hydrogen embrittlement.

Common Materials Used for Rotary Seals

Rotary seals come in several different materials. The optimal choice is dependent on the environment in which it is used. The most common materials include nitrile rubber, polyacrylate rubber, fluoroelastomers (FKM), and PTFE.

While these materials are a good choice for rotary seals, conventional rubber seals are common in static applications where temperature and chemical compatibility are not a concern. PTFE is the solution in high-speed dynamic service requiring low friction seals or where exposure to severe temperature or chemicals exists. There are different types of PTFE used for rotary shaft seals.  Users can choose from 

  • Virgin PTFE
  • Molybdenum Disulfide Filled PTFE (MoS2)
  • Carbon Filled PTFE
  • Carbon and Graphite Filled PTFE
  • Carbon and MoS2  Filled PTFE
  • Glass Filled PTFE
  • Glass and MoS2  Filled PTFE
  • Polymide Filled PTFE

Properties of Rotary Shafts Mating Surfaces That Affect Sealing Performance

Most often, rotary shafts are metal. However, the rotary shaft mating surface could be made from plastics. No matter what material the shaft is made from, some properties will affect the sealing performance of the shaft.

The properties of the rotary shaft that affect sealing performance are the shaft harness and the shaft roughness. The sections below explain in greater detail how the hardness and roughness of the rotary shaft can affect the rotary shaft’s sealing performance. 

Rotary Shaft Hardness

The hardness of the rotary shaft is how deep an indenter can penetrate the surface of a shaft. The shaft’s hardness is measured in the Rockwell C scale. The higher the number, the more complex the surface. 

As a general rule, the rotary shaft should always be harder than the seal to ensure the seal wears out before the shaft. Additionally, if you choose a harder surface, there are more options for seal materials.

With a rotary shaft with a hardness exceeding 45 Rockwell C, the seal doesn’t have time to polish and “bed in.” That means that any roughness on the surface will cause issues with the seal, wearing it down quicker than average. A shaft with a hardness under 45 Rc requires a softer seal which doesn’t have as long of a life.

The choice of hardness depends on the environmental pressure and shaft speed. For example:

  • In environments of 1000 psi with rates up to 150 sfpm, a shaft with 70Rc or greater is necessary
  • Settings using shaft speed 2500 sfpm and 0 psi need a hardness of 60Rc or greater.
  • Rotary shaft speeds of up to 150 sfpm and 0 psi need a hardness of at least 35Rc, with lubrication, or 44, with no lubrication.

Rotary Shaft Mating Surface Roughness

The rotary shaft’s roughness refers to the shaft surface’s unevenness. To measure the roughness, measurements of high and low points of the shaft and taking the difference to determine the machined tolerance.

Ideally, a smoother surface will increase the seal life and offer outstanding performance. But on the other hand, when the surface is exceptionally smooth, there is no way for the oil to flow between the mating surface and the seal. As a result, the seal wears out quicker without lubricant between the seal and the mating surface.

Of course, a high roughness level can allow leaks through low points on the shaft. Therefore, the rotary shaft roughness needs to be relatively smooth but not so smooth that the seal cannot be lubricated.

Rotary shafts work with the rotary seals to keep lubrication from dirt and water. Understanding the properties of the rotary shaft mating surfaces helps determine the type of seal material chosen. Contact us today for your rotary seal and shaft mating needs.